Câu trả lời:
Không có giải pháp nào khả thi.
Giải trình:
Để cho
Do đó, số nguyên sẽ là
và
tổng của họ sẽ là
Chúng tôi được biết rằng số tiền này là
Vì thế
ngụ ý
và
Nhưng chúng tôi được cho biết rằng những con số là số nguyên
Do đó, không có giải pháp nào khả thi.
Sức mạnh thứ tư của sự khác biệt chung của một tiến trình số học là với các mục nguyên được thêm vào sản phẩm của bất kỳ bốn số hạng liên tiếp nào của nó. Chứng minh rằng tổng kết quả là bình phương của một số nguyên?
Đặt sự khác biệt chung của một AP số nguyên là 2d. Bất kỳ bốn số hạng liên tiếp của tiến trình có thể được biểu diễn dưới dạng a-3d, a-d, a + d và + 3d, trong đó a là một số nguyên. Vì vậy, tổng các sản phẩm của bốn điều khoản này và sức mạnh thứ tư của sự khác biệt chung (2d) ^ 4 sẽ là = color (blue) ((a-3d) (quảng cáo) (a + d) (a + 3d)) + màu (đỏ) ((2d) ^ 4) = màu (xanh) ((a ^ 2-9d ^ 2) (a ^ 2-d ^ 2)) + màu (đỏ) (16d ^ 4) = màu (xanh ) ((a ^ 4-10d ^ 2a ^ 2 + 9d ^ 4) + màu (đỏ) (16d ^ 4) = màu (xanh lá c
Biết công thức tính tổng của N số nguyên a) tổng của số nguyên N liên tiếp đầu tiên là bao nhiêu, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Tổng các số nguyên N liên tiếp đầu tiên Sigma_ (k = 1) ^ N k ^ 3?
Với S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ta có sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 tổng_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 giải cho sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni nhưng sum_ {i = 0} ^ ni = ((n + 1) n) / 2 nên sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
"Lena có 2 số nguyên liên tiếp.Cô nhận thấy rằng tổng của chúng bằng với sự khác biệt giữa các hình vuông của chúng. Lena chọn thêm 2 số nguyên liên tiếp và thông báo điều tương tự. Chứng minh đại số rằng điều này đúng với 2 số nguyên liên tiếp?
Vui lòng tham khảo Giải thích. Hãy nhớ rằng các số nguyên liên tiếp khác nhau 1. Do đó, nếu m là một số nguyên, thì số nguyên tiếp theo phải là n + 1. Tổng của hai số nguyên này là n + (n + 1) = 2n + 1. Sự khác biệt giữa các hình vuông của chúng là (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, như mong muốn! Cảm nhận niềm vui của toán học.!