Phương trình (x-1) ^ 2 / 4- (y + 2) ^ 2/9 = 1 cho tôi biết gì về hyperbola của nó?

Phương trình (x-1) ^ 2 / 4- (y + 2) ^ 2/9 = 1 cho tôi biết gì về hyperbola của nó?
Anonim

Câu trả lời:

Xin vui lòng xem giải thích dưới đây

Giải trình:

Phương trình tổng quát của một hyperbola là

# (x-h) ^ 2 / a ^ 2- (y-k) ^ 2 / b ^ 2 = 1 #

Đây, Phương trình là

# (x-1) ^ 2/2 ^ 2- (y + 2) ^ 2/3 ^ 2 = 1 #

# a = 2 #

# b = 3 #

# c = sqrt (a ^ 2 + b ^ 2) = sqrt (4 + 9) = sqrt13 #

Trung tâm là # C = (h, k) = (1, -2) #

Các đỉnh là

# A = (h + a, k) = (3, -2) #

#A '= (h-a, k) = (- 1, -2) #

Các trọng tâm là

# F = (h + c, k) = (1 + sqrt13, -2) #

#F '= (h-c, k) = (1-sqrt13, -2) #

Độ lệch tâm là

# e = c / a = sqrt13 / 2 #

đồ thị {((x-1) ^ 2 / 4- (y + 2) ^ 2 / 9-1) = 0 -14,24, 14,25, -7,12, 7,12}

Câu trả lời:

Xem câu trả lời dưới đây

Giải trình:

Phương trình đã cho của hyperbola

# frac {(x-1) ^ 2} {4} - frac {(y + 2) ^ 2} {9} = 1 #

# frac {(x-1) ^ 2} {2 ^ 2} - frac {(y + 2) ^ 2} {3 ^ 2} = 1 #

Phương trình trên là ở dạng hyperbola tiêu chuẩn:

# (x-x_1) ^ 2 / a ^ 2- (y-y_1) ^ 2 / b ^ 2 = 1 #

Trong đó có

Độ lệch tâm: # e = sqrt {1 + b ^ 2 / a ^ 2} = sqrt {1 + 9/4} = sqrt13 / 2 #

Trung tâm: # (x_1, y_1) Equiv (1, -2) #

Đỉnh: # (x_1 pm a, y_1) Equiv (1 pm2, -2) # &

# (x_1, y_1 pm b) Equiv (1, -2 pm 3) #

Tiệm cận: # y-y_1 = pm b / a (x-x_1) #

# y + 2 = pm3 / 2 (x-1) #