Câu trả lời:
Tất cả điều này có nghĩa là tối thiểu giữa tổng chênh lệch giữa giá trị y thực tế và giá trị y dự đoán.
Giải trình:
Chỉ có nghĩa là tối thiểu giữa tổng của tất cả các cộng đồng
tất cả điều này có nghĩa là tối thiểu giữa tổng chênh lệch giữa giá trị y thực tế và giá trị y dự đoán.
Bằng cách này bằng cách giảm thiểu lỗi giữa dự đoán và lỗi, bạn sẽ có được mức phù hợp nhất cho đường hồi quy.
Các số hạng thứ nhất và thứ hai của một chuỗi hình học tương ứng là các số hạng thứ nhất và thứ ba của một chuỗi tuyến tính Số hạng thứ tư của chuỗi tuyến tính là 10 và tổng của năm số hạng đầu tiên của nó là 60 Tìm năm số hạng đầu tiên của chuỗi tuyến tính?
{16, 14, 12, 10, 8} Một chuỗi hình học điển hình có thể được biểu diễn dưới dạng c_0a, c_0a ^ 2, cdots, c_0a ^ k và một chuỗi số học điển hình như c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Gọi c_0 a là yếu tố đầu tiên cho chuỗi hình học mà chúng ta có {(c_0 a ^ 2 = c_0a + 2Delta -> "Đầu tiên và thứ hai của GS là đầu tiên và thứ ba của LS"), (c_0a + 3Delta = 10- > "Số hạng thứ tư của chuỗi tuyến tính là 10"), (5c_0a + 10Delta = 60 -> "Tổng của năm số hạng đầu tiên của nó là
Đặt 5a + 12b và 12a + 5b là độ dài cạnh của tam giác vuông và 13a + kb là cạnh huyền, trong đó a, b và k là các số nguyên dương. Làm thế nào để bạn tìm thấy giá trị nhỏ nhất có thể của k và giá trị nhỏ nhất của a và b cho k đó?
K = 10, a = 69, b = 20 Theo định lý của Pythagoras, chúng ta có: (13a + kb) ^ 2 = (5a + 12b) ^ 2 + (12a + 5b) ^ 2 Đó là: 169a ^ 2 + 26kab + k ^ 2b ^ 2 = 25a ^ 2 + 120ab + 144b ^ 2 + 144a ^ 2 + 120ab + 25b ^ 2 màu (trắng) (169a ^ 2 + 26kab + k ^ 2b ^ 2) = 169a ^ 2 + 240ab + 169b ^ 2 Trừ phần bên trái từ cả hai đầu để tìm: 0 = (240-26k) ab + (169-k ^ 2) b ^ 2 màu (trắng) (0) = b ((240-26k) a + ( 169-k ^ 2) b) Vì b> 0, chúng tôi yêu cầu: (240-26k) a + (169-k ^ 2) b = 0 Sau đó, từ a, b> 0, chúng tôi yêu cầu (240-26k) và (169-k
Tuyến nào tiết ra các hormone ảnh hưởng đến các tuyến nội tiết khác: tuyến tùng, tuyến yên, tuyến giáp, tuyến thượng thận hoặc tuyến tụy?
Đó là tuyến yên và do đó nó được gọi là tuyến chủ của cơ thể