Câu trả lời:
Xem giải thích
Giải trình:
Tất cả phụ thuộc vào giá trị của n. Nếu bạn tham chiếu tam giác của Pascal, bạn có thể quan sát mức độ thay đổi này>
Giả sử n = 6 thì bạn sẽ nhìn vào dòng
Nhưng trước tiên hãy cho phép xây dựng tất cả các chỉ số (quyền hạn)
Nhân tiện;
Bây giờ chúng tôi thêm vào các hệ số từ dòng 6
Nếu tôi nhớ chính xác; Nói chung, chúng tôi có:
Hãy thử nghiệm cho
Thuật ngữ thứ 20 của một chuỗi số học là log20 và thuật ngữ thứ 32 là log32. Chính xác một thuật ngữ trong chuỗi là một số hữu tỷ. Số hữu tỉ là gì?
Thuật ngữ thứ mười là log10, bằng 1. Nếu thuật ngữ thứ 20 là log 20 và thuật ngữ thứ 32 là log32, thì nó có nghĩa là thuật ngữ thứ mười là log10. Nhật ký10 = 1. 1 là số hữu tỉ. Khi một bản ghi được viết mà không có "cơ sở" (chỉ mục sau bản ghi), cơ sở 10 được ngụ ý. Điều này được gọi là "nhật ký chung". Đăng nhập cơ sở 10 của 10 bằng 1, vì 10 đến công suất đầu tiên là một. Một điều hữu ích cần nhớ là "câu trả lời cho nhật ký là số mũ". Một số hữu tỷ là một
Các thuật ngữ thứ 2, 6 và 8 của một tiến trình Số học là ba thuật ngữ liên tiếp của một hình học.P. Làm cách nào để tìm tỷ lệ chung của G.P và có được biểu thức cho số hạng thứ n của G.P?
Phương pháp của tôi không giải quyết nó! Tổng số viết lại r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Để làm cho sự khác biệt giữa hai chuỗi rõ ràng tôi đang sử dụng ký hiệu sau: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + màu (trắng) (5) d =
Thuật ngữ thứ hai của một chuỗi số học là 24 và thuật ngữ thứ năm là 3. Thuật ngữ đầu tiên và sự khác biệt phổ biến là gì?
Học kỳ đầu tiên 31 và sự khác biệt chung -7 Hãy để tôi bắt đầu bằng cách nói bạn có thể thực sự làm điều này như thế nào, sau đó chỉ cho bạn cách bạn nên làm điều đó ... Trong nhiệm kỳ thứ 2 đến thứ 5 của chuỗi số học, chúng tôi thêm sự khác biệt chung 3 lần. Trong ví dụ của chúng tôi có kết quả từ 24 đến 3, thay đổi -21. Vì vậy, ba lần chênh lệch phổ biến là -21 và chênh lệch phổ biến là -21/3 = -7 Để có được từ học kỳ 2 trở lại lần thứ nhất, chúng ta cần trừ đi sự