Câu trả lời:
Dạng đỉnh là
Giải trình:
Mở rộng phương trình
Sau đó hoàn thành các hình vuông cho
Vậy đường đối xứng có phương trình
và đỉnh là tại
đồ thị {2 (x ^ 2) +4 x-16 -40, 40, -20, 20}
Trọng lượng của một vật trên mặt trăng. thay đổi trực tiếp như trọng lượng của các vật thể trên Trái đất. Một vật thể nặng 90 pound trên Trái đất nặng 15 pound trên mặt trăng. Nếu một vật thể nặng 156 pound trên Trái đất, thì nó nặng bao nhiêu trên mặt trăng?
26 pounds Trọng lượng của vật thể đầu tiên trên Trái đất là 90 pounds nhưng trên mặt trăng, nó là 15 pounds. Điều này cho chúng ta tỷ lệ giữa cường độ trường hấp dẫn tương đối của Trái đất và mặt trăng, W_M / (W_E) mang lại tỷ lệ (15/90) = (1/6) xấp xỉ 0,167 Nói cách khác, trọng lượng của bạn trên mặt trăng là 1/6 những gì nó có trên trái đất. Do đó, chúng tôi nhân khối lượng của vật nặng hơn (đại số) như thế này: (1/6) = (x) / (156) (x = khối lượng trên mặt trăng) x = (156) lần (1/6) x = 2
Đồ thị của h (x) được hiển thị. Biểu đồ dường như liên tục tại, nơi định nghĩa thay đổi. Cho thấy h trong thực tế liên tục bằng cách tìm giới hạn bên trái và bên phải và cho thấy định nghĩa về tính liên tục được đáp ứng?
Vui lòng tham khảo Giải thích. Để chỉ ra rằng h là liên tục, chúng ta cần kiểm tra tính liên tục của nó tại x = 3. Chúng tôi biết rằng, h sẽ là cont. tại x = 3, khi và chỉ khi, lim_ (x đến 3-) h (x) = h (3) = lim_ (x đến 3+) h (x) ............ ................... (ast). Như x đến 3-, x lt 3 :. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x đến 3-) h (x) = lim_ (x đến 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x đến 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Tương tự, lim_ (x đến 3+) h (x) = lim_ (x đến 3+) 4 (0.6) ^ (x-3)
Trong khi nhật thực toàn phần, mặt trời bị Mặt trăng che phủ hoàn toàn. Bây giờ hãy xác định mối quan hệ giữa kích thước mặt trời và mặt trăng và khoảng cách trong điều kiện này? Bán kính của mặt trời = R; moon's = r & khoảng cách của mặt trời và mặt trăng từ trái đất tương ứng D & d
Đường kính góc của Mặt trăng cần phải lớn hơn đường kính góc của Mặt trời để xảy ra nhật thực toàn phần. Đường kính góc theta của Mặt trăng có liên quan đến bán kính r của Mặt trăng và khoảng cách d của Mặt trăng từ Trái đất. 2r = d theta Tương tự đường kính góc Theta của Mặt trời là: 2R = D Theta Vì vậy, đối với nhật thực toàn phần, đường kính góc của Mặt trăng phải lớn hơn Mặt trời. theta> Theta Điều này có nghĩa là bán kính và khoảng cách phải tuân theo: r / d> R / D Tr