Làm thế nào để bạn phân biệt rõ ràng 2x / y = ysqrt (x ^ 2 + y ^ 2) -x?

Làm thế nào để bạn phân biệt rõ ràng 2x / y = ysqrt (x ^ 2 + y ^ 2) -x?
Anonim

Câu trả lời:

# dy / dx = - (yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1) / (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) #

Giải trình:

Được rồi, đây là một cái rất dài. Tôi sẽ đánh số từng bước để làm cho nó dễ dàng hơn và tôi cũng không kết hợp các bước để bạn biết điều gì đang xảy ra.

  1. Bắt đầu với:

    # 2xy ^ -1 = y (x ^ 2 + y ^ 2) ^ (1/2) -x #

Đầu tiên chúng tôi lấy # d / dx # của mỗi nhiệm kỳ:

2. # d / dx 2xy ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) - d / dx x #

3. # d / dx 2x y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + yd / dx (x ^ 2 + y ^ 2) ^ (1/2) - d / dx x #

4. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2d / dx x ^ 2 + y ^ 2 -1 #

5. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2 (d / dx x ^ 2 + d / dx y ^ 2) - 1 #

6. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2 (2x + d / dx y ^ 2) - 1 #

Bây giờ chúng tôi sử dụng # d / dx = d / dy * dy / dx #:

7. # 2y ^ -1-dy / dxxy ^ -2 = dy / dx (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (- 1/2)) / 2 (2x + dy / dx2y) -1 #

8. Bây giờ chúng tôi sắp xếp lại:

# -dy / dx (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2)) = yx (x ^ 2 + y ^ 2) ^ (- 1/2) + dy / dxy ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1 #

9. # -dy / dx (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) = yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1 #

10. # dy / dx = - (yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1) / (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) #