Câu trả lời:
Có một bên thứ ba có thể xung quanh
Nếu chiều dài bên
Giải trình:
Đây có lẽ là một vấn đề phức tạp hơn lần đầu tiên xuất hiện. Bất cứ ai cũng biết làm thế nào để tìm thấy bên thứ ba, mà chúng ta dường như cần cho vấn đề này? Bình thường trig thông thường làm cho chúng ta tính toán các góc, làm cho một xấp xỉ mà không cần phải có.
Nó không thực sự được dạy ở trường, nhưng cách dễ nhất là Định lý Archimedes, một dạng hiện đại của Định lý Heron. Hãy gọi khu vực của A
Chúng ta có
Đó là hai giá trị khác nhau cho
Đối với diện tích tối đa, tỷ lệ tối đa, có nghĩa là tỷ lệ bên nhỏ nhất để
Đối với diện tích tối thiểu, tỷ lệ bên lớn nhất để
Tam giác A có diện tích 12 và hai cạnh dài 5 và 7. Tam giác B tương tự tam giác A và có cạnh có chiều dài 19. Các diện tích tối đa và tối thiểu có thể có của tam giác B là gì?
Diện tích tối đa = 187.947 "" đơn vị vuông Diện tích tối thiểu = 88,4082 "" đơn vị vuông Các tam giác A và B tương tự nhau. Theo tỷ lệ và tỷ lệ phương pháp giải, tam giác B có ba tam giác có thể. Đối với Tam giác A: các cạnh là x = 7, y = 5, z = 4.800941906394, Góc Z = 43.29180759327 ^ @ Góc Z giữa các cạnh x và y đã thu được bằng cách sử dụng công thức cho diện tích tam giác Diện tích = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Ba tam giác c
Tam giác A có diện tích 4 và hai cạnh dài 8 và 4. Tam giác B tương tự tam giác A và có cạnh có chiều dài là 13. Các diện tích tối đa và tối thiểu có thể có của tam giác B là gì?
"Tối đa" = 169/40 (5 + sqrt15) ~ ~ 37.488 "Tối thiểu" = 169/40 (5 - sqrt15) ~ ~ 4.762 Đặt các đỉnh của tam giác A được gắn nhãn P, Q, R, với PQ = 8 và QR = 4. Sử dụng Công thức của Heron, "Khu vực" = sqrt {S (S-PQ) (S-QR) (S-PR)}, trong đó S = {PQ + QR + PR} / 2 là nửa chu vi, chúng tôi có S = {8 + 4 + PR} / 2 = {12 + PR} / 2 Do đó, sqrt {S (S-PQ) (S-QR) (S-PR)} = sqrt {({12 + PQ} / 2) ({12 + PQ} / 2-8) ({12 + PQ} / 2-4) ({12 + PQ} / 2-PQ)} = sqrt {(12 + PQ) (PQ - 4) (4 + PQ) (12 - PQ)} / 4 = "Diện tích" = 4 Giải cho C. sqrt
Tam giác A có diện tích 4 và hai cạnh dài 8 và 7. Tam giác B tương tự tam giác A và có cạnh có chiều dài là 13. Các diện tích tối đa và tối thiểu có thể có của tam giác B là gì?
Delta s A và B tương tự nhau. Để có được diện tích tối đa của Delta B, bên 13 của Delta B phải tương ứng với bên 7 của Delta A. Các mặt nằm trong tỷ lệ 13: 7 Do đó, các khu vực sẽ ở tỷ lệ 13 ^ 2: 7 ^ 2 = 625: 49 Diện tích tam giác tối đa B = (4 * 169) / 49 = 13.7959 Tương tự để có diện tích tối thiểu, cạnh 8 của Delta A sẽ tương ứng với cạnh 13 của Delta B. Các mặt nằm trong tỷ lệ 13: 8 và các khu vực 169: 64 Diện tích tối thiểu của Delta B = (4 * 169) / 64 = 10,5625