Câu trả lời:
điểm B là
Giải trình:
điểm giữa,
vì thế,
điểm B là
John đã nhận được số điểm 75 trong bài kiểm tra toán trong đó giá trị trung bình là 50. Nếu điểm của anh ấy là 2,5 độ lệch chuẩn so với giá trị trung bình, thì phương sai của điểm kiểm tra lớp là gì?
Độ lệch chuẩn được định nghĩa là căn bậc hai của phương sai. (vì vậy phương sai là bình phương độ lệch chuẩn) Trong trường hợp của John, anh ta cách giá trị trung bình 25, nghĩa là gấp 2,5 lần sigma độ lệch chuẩn. Vậy: sigma = 25 / 2.5 = 10 -> "phương sai" = sigma ^ 2 = 100
Ông Patrick dạy toán cho 15 học sinh. Anh ta đang chấm điểm các bài kiểm tra và thấy rằng điểm trung bình của lớp là 80. Sau khi anh ta chấm điểm bài kiểm tra của học sinh Payton, điểm trung bình bài kiểm tra là 81. Điểm của Payton trong bài kiểm tra là gì?
Điểm của Payton là 95 Ông Patrick có 15 sinh viên. Trong bài kiểm tra gần đây của mình, trung bình là 80 cho 14 sinh viên (không bao gồm Payton). Trung bình được tính bằng cách cộng tất cả các số trong tập hợp (có trung bình bạn đang cố gắng tìm) cùng nhau, sau đó chia cho tổng số lượng trong tập đó x / 14 = 80 rarr Tôi sẽ sử dụng x để biểu thị Tổng số chưa biết của 14 điểm kiểm tra x = 1120 rarr Đây là tổng điểm của họ Bây giờ, để thêm điểm của Payton (Tôi sẽ sử dụng p để biểu thị điểm của
Giả sử một lớp học sinh có điểm toán SAT trung bình là 720 và điểm bằng lời trung bình là 640. Độ lệch chuẩn cho mỗi phần là 100. Nếu có thể, hãy tìm độ lệch chuẩn của điểm tổng hợp. Nếu không thể, giải thích tại sao.?
141 Nếu X = điểm toán và Y = điểm bằng lời nói, E (X) = 720 và SD (X) = 100 E (Y) = 640 và SD (Y) = 100 Bạn không thể thêm các độ lệch chuẩn này để tìm tiêu chuẩn độ lệch cho điểm tổng hợp; tuy nhiên, chúng ta có thể thêm phương sai. Phương sai là bình phương độ lệch chuẩn. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, nhưng vì chúng ta muốn độ lệch chuẩn, chỉ cần lấy căn bậc hai của số này. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~ ~ 141 Do đó, độ lệch ch