Câu trả lời:
Giải trình:
vì thế
hiện nay
và đặt tất cả lại với nhau
Chứng tỏ rằng cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Tôi hơi bối rối nếu tôi tạo Cos²4π / 10 = cos² (π - 6π / 10) & cos²9π / 10 = cos² (π - π / 10), nó sẽ chuyển thành âm thành cos (180 ° -theta) = - costheta trong góc phần tư thứ hai. Làm thế nào để tôi đi về việc chứng minh câu hỏi?
Vui lòng xem bên dưới. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Làm thế nào để bạn chứng minh cos ^ 4theta-sin ^ 4theta = cos2theta?
Chúng tôi sẽ sử dụng rarrsin ^ 2x + cos ^ 2x = 1, a ^ 2-b ^ 2 = (a + b) (a-b) và cos ^ 2x-sin ^ 2x = cos2x. LHS = cos ^ 4x-sin ^ 4x = (cos ^ 2x) ^ 2- (sin ^ 2x) ^ 2 = (cos ^ 2x + sin ^ 2x) * (cos ^ 2x-sin ^ 2x) = 1 * cos2x = cos2x = RHS
Chứng tỏ rằng, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Vui lòng xem bên dưới. Đặt 1 + costheta + isintheta = r (cosalpha + isinalpha), ở đây r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) và tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) hoặc alpha = theta / 2 thì 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) và chúng ta có thể viết (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n sử dụng định lý DE MOivre là r ^ n (cosnalpha + isin