Làm thế nào để bạn tìm thấy đạo hàm của sinx / (1 + cosx)?

Làm thế nào để bạn tìm thấy đạo hàm của sinx / (1 + cosx)?
Anonim

Câu trả lời:

# 1 / (cosx + 1) #

Giải trình:

#f (x) = sinx / (cosx + 1) #

#f '(x) = (sinx / (cosx + 1))' #

Đạo hàm của #f (x) / g (x) # sử dụng Quy tắc đơn vị là

# (f '(x) g (x) -f (x) g' (x)) / g ^ 2 (x) #

vì vậy trong trường hợp của chúng tôi

#f '(x) = ((sinx)' (cosx + 1) -sinx (cosx + 1) ') / (cosx + 1) ^ 2 # #=#

# (cosx (cosx + 1) + sin ^ 2x) / (cosx + 1) ^ 2 # #=#

# (màu (xanh dương) (cos ^ 2x) + cosx + màu (xanh dương) (sin ^ 2x)) / (cosx + 1) ^ 2 # #=#

#celon ((cosx + màu (xanh dương) (1))) / (cosx + 1) ^ hủy (2) # #=#

# 1 / (cosx + 1) #

Câu trả lời:

# 1/2 giây ^ 2 (x / 2) hoặc 1 / (1 + cosx) #.

Giải trình:

Chúng ta có, # sinx / (1 + cosx) #, # = {2sin (x / 2) cos (x / 2)} / {2cos ^ 2 (x / 2)} #,

# = tan (x / 2) #.

# "Do đó," d / dx {sinx / (1 + cosx)} #, # = d / dx {tan (x / 2)} #, # = sec ^ 2 (x / 2) * d / dx {x / 2} …… "Quy tắc chuỗi" #, # = giây ^ 2 (x / 2) * 1/2 #, # = 1/2 giây ^ 2 (x / 2), hoặc, #

# = 1 / (2cos ^ 2 (x / 2)) #, # = 1 / (1 + cosx) #.