Câu trả lời:
Đây là những gì tôi đã có.
Giải trình:
Các nhà lý luận về động lực như Tolman (1932) và Hull (1943) về mặt hành vi.
Về phía các công thức liên quan đến động lực trong các trại tâm lý học Freud (1932/1962); Hartman, (1939) đã tạo ra một lượng nghiên cứu thực nghiệm được tích hợp và giải thích trong các mô hình này.
White (1959) Đánh giá tinh tế về sự bất cập của cả lý thuyết ổ đĩa hành vi và tâm lý học giải thích sự khám phá tích cực, sự tò mò và nhiều thứ khác liên quan đến động lực, học hỏi và phát triển, và nghiên cứu về lĩnh vực này một cách buồn bã.
(Sẽ hoàn thành việc này sau, thời gian trôi qua hơi nhanh)
Bạn đã nghiên cứu số lượng người xếp hàng chờ đợi tại ngân hàng của bạn vào chiều thứ Sáu lúc 3 giờ chiều trong nhiều năm và đã tạo phân phối xác suất cho 0, 1, 2, 3 hoặc 4 người xếp hàng. Các xác suất lần lượt là 0,1, 0,3, 0,4, 0,1 và 0,1. Xác suất mà nhiều nhất là 3 người xếp hàng vào lúc 3 giờ chiều chiều thứ sáu là bao nhiêu?
Nhiều nhất là 3 người trong dòng. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.1 + 0.3 + 0.4 + 0.1 = 0.9 Do đó P (X <= 3) = 0.9 Do đó, câu hỏi sẽ mặc dù dễ dàng hơn để sử dụng quy tắc khen ngợi, vì bạn có một giá trị mà bạn không quan tâm, vì vậy bạn chỉ có thể trừ nó ra khỏi tổng xác suất. as: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0.1 = 0.9 Do đó P (X <= 3) = 0.9
Bạn đã nghiên cứu số lượng người xếp hàng chờ đợi tại ngân hàng của bạn vào chiều thứ Sáu lúc 3 giờ chiều trong nhiều năm và đã tạo phân phối xác suất cho 0, 1, 2, 3 hoặc 4 người xếp hàng. Các xác suất lần lượt là 0,1, 0,3, 0,4, 0,1 và 0,1. Xác suất mà ít nhất 3 người xếp hàng vào lúc 3 giờ chiều chiều thứ sáu là gì?
Đây là một tình huống EITHER ... HOẶC. Bạn có thể THÊM xác suất. Các điều kiện là độc quyền, đó là: bạn không thể có 3 VÀ 4 người trong một dòng. Có EITHER 3 người HOẶC 4 người xếp hàng. Vì vậy, thêm: P (3 hoặc 4) = P (3) + P (4) = 0.1 + 0.1 = 0.2 Kiểm tra câu trả lời của bạn (nếu bạn còn thời gian trong khi kiểm tra), bằng cách tính xác suất ngược lại: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Và điều này và câu trả lời của bạn thêm tới 1, như họ nên.
Bạn đã nghiên cứu số lượng người xếp hàng chờ đợi tại ngân hàng của bạn vào chiều thứ Sáu lúc 3 giờ chiều trong nhiều năm và đã tạo phân phối xác suất cho 0, 1, 2, 3 hoặc 4 người xếp hàng. Các xác suất lần lượt là 0,1, 0,3, 0,4, 0,1 và 0,1. Số người dự kiến (trung bình) đang xếp hàng vào lúc 3 giờ chiều chiều thứ sáu là bao nhiêu?
Con số dự kiến trong trường hợp này có thể được coi là trung bình có trọng số. Tốt nhất là đến bằng cách tổng hợp xác suất của một số đã cho bằng số đó. Vì vậy, trong trường hợp này: 0,1 * 0 + 0,3 * 1 + 0,4 * 2 + 0,1 * 3 + 0,1 * 4 = 1,8