Chứng minh rằng cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?

Chứng minh rằng cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?
Anonim

# LHS = cosec (x / 4) + cosec (x / 2) + cosecx #

# = cosec (x / 4) + cosec (x / 2) + cosecx + cotx-cotx #

# = cosec (x / 4) + cosec (x / 2) + màu (xanh dương) 1 / sinx + cosx / sinx -cotx #

# = cosec (x / 4) + cosec (x / 2) + màu (xanh dương) (1 + cosx) / sinx -cotx #

# = cosec (x / 4) + cosec (x / 2) + màu (xanh dương) (2cos ^ 2 (x / 2)) / (2sin (x / 2) cos (x / 2)) - cotx #

# = cosec (x / 4) + cosec (x / 2) + màu (xanh dương) (cos (x / 2) / sin (x / 2)) - cotx #

# = cosec (x / 4) + màu (xanh lá cây) (cosec (x / 2) + cot (x / 2)) - cotx #

#color (đỏ tươi) "Tiếp tục theo cách tương tự như trước" #

# = cosec (x / 4) + màu (xanh) cot (x / 4) -cotx #

# = cot (x / 8) -cotx = RHS #

Câu trả lời:

Vui lòng đi qua một Bằng chứng đưa ra trong Giải trình.

Giải trình:

Cài đặt # x = 8y #, chúng ta có Để chứng minh rằng,

# cosec2y + cosec4y + cosec8y = coty-cot8y #.

Quan sát rằng, # cosec8y + cot8y = 1 / (sin8y) + (cos8y) / (sin8y) #, # = (1 + cos8y) / (sin8y) #, # = (2cos ^ 2 4y) / (2sin4ycos4y) #, # = (cos4y) / (sin4y) #.

# "Do đó," cosec8y + co8y = cot4y = cot (1/2 * 8y) …….. (sao) #.

Thêm, # cosec4y #, # cosec4y + (cosec8y + co8y) = cosec4y + cot4y #,

# = cũi (1/2 * 4y) ……… vì, (sao) #.

#:. cosec4y + cosec8y + co8y = cot2y #.

Thêm lại # cosec2y #sử dụng lại #(ngôi sao)#, # cosec2y + (cosec4y + cosec8y + co8y) = cosec2y + cot2y #, # = cũi (1/2 * 2y) #.

#: cosec2y + cosec4y + cosec8y + co8y = coty, tức là, #

# cosec2y + cosec4y + cosec8y = coty-cot8y #, như mong muốn!

Câu trả lời:

Một cách tiếp cận khác mà tôi dường như đã học được trước đây từ kính trọng ngài dk_ch.

Giải trình:

# RHS = cũi (x / 8) -cotx #

# = cos (x / 8) / sin (x / 8) -cosx / sinx #

# = (sinx * cos (x / 8) -cosx * sin (x / 8)) / (sinx * sin (x / 8)) #

# = sin (x-x / 8) / (sinx * sin (x / 8)) = sin ((7x) / 8) / (sinx * sin (x / 8)) #

# = (2sin ((7x) / 8) * cos (x / 8)) / (2 * sin (x / 8) * cos (x / 8) * sinx) #

# = (sinx + sin ((3x) / 4)) / (sinx * sin (x / 4)) = hủy (sinx) / (hủy (sinx) * sin (x / 4)) + (2sin ((3x) / 4) * cos (x / 4)) / (sinx * 2 * sin (x / 4) * cos (x / 4)) #

# = cosec (x / 4) + (sinx + sin (x / 2)) / (sinx * sin (x / 2)) = cosecx + cosec (x / 2) + coesc (x / 4) = LHS #