Câu trả lời:
Phương trình của parabol là
Giải trình:
Trọng tâm là
Directrix là
Bất cứ điểm nào
Vì thế,
đồ thị {((x + 4) ^ 2-4y-8) (y + 3) ((x + 4) ^ 2 + (y + 1) ^ 2-0,01) = 0 -10, 10, -5, 5}
Dạng chuẩn của phương trình của parabol có trọng tâm tại (11, -10) và directrix của y = 5 là gì?
(x-11) ^ 2 = -30 (y + 5/2). Xem biểu đồ Socratic cho parabola, với tiêu điểm và directrix. Sử dụng khoảng cách của (x, y,) từ tiêu điểm (11, -10) = khoảng cách từ directrix y = 5, sqrt ((x-11) ^ 2 + (y + 10) ^ 2) = | y-5 |. Bình phương và sắp xếp lại, (x-11) ^ 2 = -30 (y + 5/2) đồ thị {((x-11) ^ 2 + 30 (y + 5/2)) (y-5) ((x-) 11) ^ 2 + (y + 10) ^ 2-.2) (x-11) = 0 [0, 22, -11, 5.1]}
Dạng chuẩn của phương trình của parabol có trọng tâm tại (-11,4) và directrix của y = 13 là gì?
Phương trình của parabol là y = -1 / 18 (x + 11) ^ 2 + 8,5; Trọng tâm là (-11,4) và directrix là y = 13. Đỉnh nằm ở giữa giữa tiêu cự và directrix. Vậy đỉnh nằm ở (-11, (13 + 4) / 2) hoặc (-11,8,5). Vì directrix nằm phía sau đỉnh, parabol mở xuống dưới và a là âm. Phương trình của parabol ở dạng đỉnh là y = a (x-h) ^ 2 + k; (h, k) là đỉnh. Ở đây h = -11, k = 8,5. Vậy phương trình của parabol là y = a (x + 11) ^ 2 + 8,5; . Khoảng cách từ đỉnh đến directrix là D = 13-8,5 = 4,5 và D = 1 / (4 | a |) hoặc | a | = 1 / (4
Tại sao phương trình 4x ^ 2-25y ^ 2-24x-50y + 11 = 0 không có dạng hyperbola, mặc dù thực tế là các số hạng bình phương của phương trình có các dấu hiệu khác nhau? Ngoài ra, tại sao phương trình này có thể được đặt ở dạng hyperbola (2 (x-3) ^ 2) / 13 - (2 (y + 1) ^ 2) / 26 = 1
Đối với mọi người, trả lời câu hỏi, xin lưu ý biểu đồ này: http://www.desmos.com/calculator/jixsqaffyw Ngoài ra, đây là công việc để đưa phương trình vào dạng hyperbola: