Câu trả lời:
Giải trình:
Nếu:
Miền:
Câu trả lời:
Giải trình:
Căn bậc hai chỉ được xác định khi biểu thức dưới căn bậc hai là không âm.
Miền của f (x) là tập hợp của tất cả các giá trị thực trừ 7 và miền của g (x) là tập hợp của tất cả các giá trị thực trừ -3. Tên miền của (g * f) (x) là gì?
Tất cả các số thực trừ 7 và -3 khi bạn nhân hai hàm, chúng ta đang làm gì? chúng ta đang lấy giá trị f (x) và nhân nó với giá trị g (x), trong đó x phải giống nhau. Tuy nhiên cả hai chức năng đều có các hạn chế, 7 và -3, do đó, sản phẩm của hai chức năng, phải có các hạn chế * cả *. Thông thường khi có các thao tác trên các hàm, nếu các hàm trước đó (f (x) và g (x)) có các hạn chế, chúng luôn được coi là một phần của hạn chế mới của hàm
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Chu vi của một hình tam giác là 24 inch. Bên dài nhất 4 inch dài hơn bên ngắn nhất, và bên ngắn nhất là ba phần tư chiều dài của bên giữa. Làm thế nào để bạn tìm thấy chiều dài của mỗi bên của tam giác?
Vấn đề này đơn giản là không thể. Nếu cạnh dài nhất là 4 inch, không có cách nào mà chu vi của một hình tam giác có thể là 24 inch. Bạn đang nói rằng 4 + (một cái gì đó nhỏ hơn 4) + (một cái gì đó nhỏ hơn 4) = 24, điều đó là không thể.