Câu trả lời:
KHÔNG CÓ ROOTS trong
NGUỒN GỐC
HOẶC LÀ
Giải trình:
Chúng ta phải nhân tố
Vì chúng tôi không thể sử dụng danh tính đa thức nên chúng tôi sẽ tính toán
KHÔNG CÓ ROOT
Nhưng rễ tồn tại trong
Rễ là
Phương trình là:
HOẶC LÀ
Vì vậy, rễ chỉ tồn tại trong
Phân biệt của phương trình bậc hai là -5. Câu trả lời nào mô tả số lượng và loại giải pháp của phương trình: 1 nghiệm phức 2 giải pháp thực 2 giải pháp phức 1 giải pháp thực?
Phương trình bậc hai của bạn có 2 nghiệm phức. Phân biệt đối xử của một phương trình bậc hai chỉ có thể cung cấp cho chúng ta thông tin về một phương trình có dạng: y = ax ^ 2 + bx + c hoặc một parabol. Bởi vì mức độ cao nhất của đa thức này là 2, nó phải có không quá 2 giải pháp. Phân biệt đối xử chỉ đơn giản là các công cụ bên dưới biểu tượng căn bậc hai (+ -sqrt ("")), nhưng không phải là biểu tượng căn bậc hai. + -sqrt (b ^ 2-4ac) Nếu phân biệt đối xử, b ^ 2-4ac, nhỏ hơn 0 (tức là,
Phát biểu nào mô tả đúng nhất phương trình (x + 5) 2 + 4 (x + 5) + 12 = 0? Phương trình có dạng bậc hai vì nó có thể được viết lại dưới dạng phương trình bậc hai với u thay thế u = (x + 5). Phương trình có dạng bậc hai bởi vì khi nó được mở rộng,
Như được giải thích dưới đây thay thế u sẽ mô tả nó như là bậc hai trong u. Đối với bậc hai theo x, sự mở rộng của nó sẽ có công suất cao nhất là x là 2, sẽ mô tả tốt nhất nó là bậc hai theo x.
Sử dụng phân biệt để xác định số lượng và loại giải phương trình có? x ^ 2 + 8x + 12 = 0 A. không có giải pháp thực sự B. một giải pháp thực tế C. hai giải pháp hợp lý D. hai giải pháp phi lý
C. hai giải pháp hợp lý Giải pháp cho phương trình bậc hai a * x ^ 2 + b * x + c = 0 là x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In vấn đề đang được xem xét, a = 1, b = 8 và c = 12 Thay thế, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 hoặc x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 và x = (-8 - 4) / 2 x = (- 4) / 2 và x = (-12) / 2 x = - 2 và x = -6