Làm cách nào để tính phần thực và phần ảo của phương trình này?

Làm cách nào để tính phần thực và phần ảo của phương trình này?
Anonim

Câu trả lời:

# "Phần thực" = 0,08 * e ^ 4 #

# "và phần ảo" = 0,06 * e ^ 4 #

Giải trình:

#bao (a + b) = e ^ (a + b) = e ^ a * e ^ b = exp (a) * exp (b) #

#bao (i theta) = cos (theta) + i sin (theta) #

# => e ^ (2 + i * pi / 2) = e ^ 2 * exp (i * pi / 2) = e ^ 2 * (cos (pi / 2) + i sin (pi / 2)) #

# = e ^ 2 * (0 + i) = e ^ 2 * i #

# 1 / (1 + 3i) = (1-3i) / ((1-3i) (1 + 3i)) = (1-3i) / 10 = 0,1 - 0,3 i #

#"Vì vậy chúng tôi có"#

# (e ^ 2 * i * (0,1-0,3 i)) ^ 2 #

# = e ^ 4 * (- 1) * (0.1-0.3 * i) ^ 2 #

# = - e ^ 4 * (0,01 + 0,09 * i ^ 2 - 2 * 0,1 * 0,3 * i) #

# = - e ^ 4 * (-0,08 - 0,06 * i) #

# = e ^ 4 (0,08 + 0,06 * i) #

# => "Phần thực" = 0,08 * e ^ 4 #

# "và phần ảo" = 0,06 * e ^ 4 #

Câu trả lời:

# Rl (z) = 2 / 25e ^ 4 và, Im (z) = 3 / 50e ^ 4 #.

Giải trình:

Nhớ lại rằng, # e ^ (itheta) = costheta + isintheta ………….. (vuông) #.

#:. z = ((e ^ (2 + ipi / 2)) / (1 + 3i)) ^ 2 #, # = (e ^ (2 + ipi / 2)) ^ 2 / (1 + 3i) ^ 2 #, # = e ^ (2 * (2 + ipi / 2)) / (1 + 3i) ^ 2 #, # = e ^ (4 + ipi) / (1 + 3i) ^ 2 #, # = (e ^ 4 * e ^ (ipi)) / (1 + 3i) ^ 2 #, # = {e ^ 4 * (cospi + isinpi)} / (1 + 3i) ^ 2 #,

# = {e ^ 4 (-1 + i * 0)} / (1 + 3i) ^ 2 #, # = - e ^ 4 * 1 / (1 + 3i) ^ 2 * (1-3i) ^ 2 / (1-3i) ^ 2 #, # = - {e ^ 4 (1-3i) ^ 2} / {(1 + 3i) (1-3i)} ^ 2 #, # = - {e ^ 4 (1-3i) ^ 2} / (1-9i ^ 2) ^ 2 #, # = - (e ^ 4 (1-6i + 9i ^ 2)) / {1-9 (-1)} ^ 2 #, # = - (e ^ 4 (1-6i-9)) / (10) ^ 2 #, # = - (e ^ 4 (-8-6i)) / 100 #, # = (e ^ 4 (4 + 3i)) / 50 #.

#rArr Rl (z) = 2 / 25e ^ 4 và Im (z) = 3 / 50e ^ 4 #.

Câu trả lời:

# #

# qquad qquad qquad qquad qquad quad ({e ^ {2 + i pi / 2}} / {1 + 3 i}) ^ 2 = {2 e ^ 4} / 25 + {3 e ^ 4} / 50 i. #

Giải trình:

# #

# "Chúng tôi sẽ giải quyết vấn đề này, làm việc theo cấp số nhân phức tạp" #

# "phần đầu tiên." #

# "Ở đây chúng tôi đi:" #

# ({e ^ {2 + i pi / 2}} / {1 + 3 i}) ^ 2 = (e ^ {2 + i pi / 2}) ^ 2 / (1 + 3 i) ^ 2 = (e ^ {4 + i pi}) / (1 + 3 i) ^ 2 = (e ^ {4} e ^ {i pi}) / (1 + 3 i) ^ 2 #

# qquad qquad qquad = {e ^ {4} (cos (pi) + i sin (pi))} / (1 + 3 i) ^ 2 = (e ^ {4} (- 1 + i cdot 0)) / (1 + 3 i) ^ 2 #

# qquad qquad qquad = e ^ 4 cdot {-1} / (1 + 3 i) ^ 2 = e ^ 4 cdot {-1} / (1 + 3 i) ^ 2 cdot (1 - 3 i) ^ 2 / (1 -3 i) ^ 2 #

# qquad qquad qquad = e ^ 4 cdot {-1 cdot (1 - 3 i) ^ 2} / {(1 + 3 i) ^ 2 (1 -3 i) ^ 2} = e ^ 4 cdot {-1 cdot (1 - 3 i) ^ 2} / {(1 + 3 i) (1 -3 i) ^ 2} #

# qquad qquad qquad = e ^ 4 cdot {-1 cdot (1 - 6 i + 9 i ^ 2)} / (1 ^ 2 + 3 ^ 2) ^ 2 = e ^ 4 cdot {-1 cdot (1 - 6 i - 9)} / 10 ^ 2 #

# qquad qquad qquad = e ^ 4 cdot {-1 cdot (-8 - 6 i)} / 100 = e ^ 4 cdot {8 + 6 i} / 100 #

# qquad qquad qquad = e ^ 4 màu cdot (đỏ) hủy {2} cdot (4 +3 i) / {color (đỏ) hủy {2} cdot 50} = e ^ 4 cdot (4/50 +3/50 i) #

# qquad qquad qquad = e ^ 4 cdot (2/25 +3/50 i) = {2 e ^ 4} / 25 + {3 e ^ 4} / 50 i. #

# #

# "Như vậy:" #

# qquad qquad qquad qquad qquad qquad ({e ^ {2 + i pi / 2}} / {1 + 3 i}) ^ 2 = {2 e ^ 4} / 25 + {3 e ^ 4} / 50 i. #