Hình thức Cartesian của r-theta = -2sin ^ 2theta-cot ^ 3theta là gì?

Hình thức Cartesian của r-theta = -2sin ^ 2theta-cot ^ 3theta là gì?
Anonim

Câu trả lời:

Bộ:

# x = RCosθ #

# y = rsinθ #

Câu trả lời là:

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / (x ^ 2 + y ^ 2) -x ^ 3 / y ^ 3 #

Giải trình:

Theo hình ảnh sau:

Bộ:

# x = RCosθ #

# y = rsinθ #

Vì vậy chúng tôi có:

# cosθ = x / r #

# sinθ = y / r #

# θ = arccos (x / r) = arcsin (y / r) #

# r = sqrt (x ^ 2 + y ^ 2) #

Phương trình trở thành:

# r-θ = -2sin ^ 2θ-cot ^ 3θ #

# r-θ = -2sin ^ 2θ-cos ^ 3θ / sin ^ 3θ #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / r) = - 2x ^ 2 / r ^ 2- (x ^ 3 / r ^ 3) / (y ^ 3 / r ^ 3) #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / r) = - 2x ^ 2 / r ^ 2-x ^ 3 / y ^ 3 #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / sqrt (x ^ 2 + y ^ 2) ^ 2-x ^ 3 / y ^ 3 #

#sqrt (x ^ 2 + y ^ 2) -arccos (x / sqrt (x ^ 2 + y ^ 2)) = - 2x ^ 2 / (x ^ 2 + y ^ 2) -x ^ 3 / y ^ 3 #