Hai góc của một tam giác cân là tại (1, 7) và (5, 3). Nếu diện tích của tam giác là 6 thì độ dài các cạnh của tam giác là bao nhiêu?

Hai góc của một tam giác cân là tại (1, 7) và (5, 3). Nếu diện tích của tam giác là 6 thì độ dài các cạnh của tam giác là bao nhiêu?
Anonim

Đặt tọa độ góc thứ ba của tam giác cân là # (x, y) #. Điểm này là tương đương từ hai góc khác.

Vì thế

# (x-1) ^ 2 + (y-7) ^ 2 = (x-5) ^ 2 + (y-3) ^ 2 #

# => x ^ 2-2x + 1 + y ^ 2-14y + 49 = x ^ 2-10x + 25 + y ^ 2-6y + 9 #

# => 8x-8y = -16 #

# => x-y = -2 #

# => y = x + 2 #

Bây giờ đường vuông góc được vẽ từ # (x, y) # trên đoạn thẳng nối hai góc tam giác đã cho sẽ chia đôi cạnh và tọa độ của điểm giữa này sẽ là #(3,5)#.

Vậy chiều cao của tam giác

# H = sqrt ((x-3) ^ 2 + (y-5) ^ 2) #

Và đáy của tam giác

# B = sqrt ((1-5) ^ 2 + (7-3) ^ 2) = 4sqrt2 #

Diện tích tam giác

# 1 / 2xxBxxH = 6 #

# => H = 12 / B = 12 / (4sqrt2) #

# => H ^ 2 = 9/2 #

# => (x-3) ^ 2 + (y-5) ^ 2 = 9/2 #

# => (x-3) ^ 2 + (x + 2-5) ^ 2 = 9/2 #

# => 2 (x-3) ^ 2 = 9/2 #

# => (x-3) ^ 2 = 9/4 #

# => x = 3/2 + 3 = 9/2 = 4,5 #

Vì thế # y = x + 2 = 4,5 + 2 = 6,5 #

Do đó chiều dài của mỗi cạnh bằng nhau

# = sqrt ((5-4,5) ^ 2 + (3-6,5) ^ 2) #

# = sqrt (0,25 + 12,25) = sqrt12,5 = 2,5sqrt2 #

Do đó độ dài của ba cạnh là # 2.5sqrt2,2.5sqrt2,4sqrt2 #