Diện tích của một tam giác đều cạnh a là
Câu trả lời:
Diện tích bằng
Giải trình:
Xét một tam giác đều
Diện tích của tam giác này là
Tất cả các mặt của nó được cho và bằng
độ cao của nó
Đặt cơ sở của độ cao từ đỉnh
Do đó, cặp catheti khác,
Bây giờ độ cao
từ đó
Bây giờ diện tích tam giác
Câu trả lời:
16
Giải trình:
Diện tích tam giác đều =
Trong tình huống này, Diện tích =
=
=
= 16
Tam giác A có diện tích 4 và hai cạnh dài 8 và 4. Tam giác B tương tự tam giác A và có cạnh có chiều dài là 13. Các diện tích tối đa và tối thiểu có thể có của tam giác B là gì?
"Tối đa" = 169/40 (5 + sqrt15) ~ ~ 37.488 "Tối thiểu" = 169/40 (5 - sqrt15) ~ ~ 4.762 Đặt các đỉnh của tam giác A được gắn nhãn P, Q, R, với PQ = 8 và QR = 4. Sử dụng Công thức của Heron, "Khu vực" = sqrt {S (S-PQ) (S-QR) (S-PR)}, trong đó S = {PQ + QR + PR} / 2 là nửa chu vi, chúng tôi có S = {8 + 4 + PR} / 2 = {12 + PR} / 2 Do đó, sqrt {S (S-PQ) (S-QR) (S-PR)} = sqrt {({12 + PQ} / 2) ({12 + PQ} / 2-8) ({12 + PQ} / 2-4) ({12 + PQ} / 2-PQ)} = sqrt {(12 + PQ) (PQ - 4) (4 + PQ) (12 - PQ)} / 4 = "Diện tích" = 4 Giải cho C. sqrt
Một tam giác cân có các cạnh A, B và C với các cạnh B và C có chiều dài bằng nhau. Nếu cạnh A đi từ (1, 4) đến (5, 1) và diện tích của tam giác là 15, tọa độ có thể có của góc thứ ba của tam giác là gì?
Hai đỉnh tạo thành một cơ sở có chiều dài 5, do đó độ cao phải là 6 để có được khu vực 15. Bàn chân là trung điểm của các điểm và sáu đơn vị theo hướng vuông góc cho (33/5, 73/10) hoặc (- 3/5, - 23/10). Mẹo chuyên nghiệp: Cố gắng tuân theo quy ước của các chữ cái nhỏ cho các cạnh tam giác và viết hoa cho các đỉnh tam giác. Chúng tôi đã cho hai điểm và diện tích của một tam giác cân. Hai điểm làm cơ sở, b = sqrt {(5-1) ^ 2 + (1-4) ^ 2} = 5. Chân F của độ cao là
Một tam giác cân có các cạnh A, B và C với các cạnh B và C có chiều dài bằng nhau. Nếu cạnh A đi từ (7, 1) đến (2, 9) và diện tích của tam giác là 32, tọa độ có thể có của góc thứ ba của tam giác là gì?
(1825/178, 765/89) hoặc (-223/178, 125/89) Chúng tôi đăng ký lại theo ký hiệu chuẩn: b = c, A (x, y), B (7.1), C (2.9) . Chúng tôi có văn bản {diện tích} = 32. Cơ sở của tam giác cân của chúng ta là BC. Ta có a = | BC | = sqrt {5 ^ 2 + 8 ^ 2} = sqrt {89} Trung điểm của BC là D = ((7 + 2) / 2, (1 + 9) / 2) = (9/2, 5). Đường phân giác vuông góc của BC đi qua D và đỉnh A. h = AD là độ cao mà chúng ta nhận được từ khu vực: 32 = frac 1 2 ah = 1/2 sqrt {89} hh = 64 / sqrt {89} vectơ chỉ hướng từ B đến C là CB = (2-7