Phương trình của đường tròn có điểm cuối đường kính của đường tròn là (7,4) và (-9,6) là gì?

Phương trình của đường tròn có điểm cuối đường kính của đường tròn là (7,4) và (-9,6) là gì?
Anonim

Câu trả lời:

# (x + 1) ^ 2 + (y-5) ^ 2 = 65 #

Giải trình:

Dạng chuẩn của phương trình đường tròn là.

#color (đỏ) (| bar (ul (màu (trắng) (a / a) màu (đen) ((xa) ^ 2 + (yb) ^ 2 = r ^ 2) màu (trắng) (a / a) |))) #

trong đó (a, b) là các cuộn dây của tâm và r, bán kính.

Chúng tôi yêu cầu phải biết tâm và bán kính để thiết lập phương trình.

Cho các cuộn dây của các điểm cuối của đường kính, thì tâm của vòng tròn sẽ ở giữa điểm.

Cho 2 điểm # (x_1, y_1) "và" (x_2, y_2) # thì điểm giữa là.

#color (đỏ) (| bar (ul (màu (trắng) (a / a) màu (đen) (1/2 (x_1 + x_2), 1/2 (y_1 + y_2)) màu (trắng) (a / a) |))) #

Do đó, điểm giữa của (7, 4) và (-9, 6) là.

# = (1/2 (7-9), 1/2 (4 + 6)) = (- 1,5) = "trung tâm" #

Bây giờ bán kính là khoảng cách từ tâm đến một trong hai điểm cuối.

Sử dụng #color (màu xanh) "công thức khoảng cách" #

#color (đỏ) (| bar (ul (màu (trắng) (a / a) màu (đen) (d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2)) màu (trắng) (a / a) |))) #

Ở đâu # (x_1, y_1) "và" (x_2, y_2) "là 2 điểm" #

2 điểm ở đây là tâm (-1, 5) và điểm cuối (7, 4)

# d = sqrt ((- 1-7) ^ 2 + (5-4) ^ 2) = sqrt65 = "bán kính" #

Bây giờ chúng ta có tâm = (a, b) = (-1, 5) và r # = sqrt65 #

#rArr (x + 1) ^ 2 + (y-5) ^ 2 = 65 "là phương trình của đường tròn" #