Giá trị tối thiểu của f (x, y) = x ^ 2 + 13y ^ 2-6xy-4y-2 là?

Giá trị tối thiểu của f (x, y) = x ^ 2 + 13y ^ 2-6xy-4y-2 là?
Anonim

#f (x, y) = x ^ 2 + 13y ^ 2-6xy-4y-2 #

# => f (x, y) = x ^ 2-2 * x * (3y) + (3y) ^ 2 + (2y) ^ 2-2 * (2y) * 1 + 1 ^ 2-3 #

# => f (x, y) = (x-3y) ^ 2 + (2y-1) ^ 2-3 #

Giá trị tối thiểu của mỗi biểu thức bình phương phải bằng không.

Vì thế # f (x, y) _ "phút" = - 3 #

Câu trả lời:

Có một mức tối thiểu tương đối tại #(3/2,1/2)##f (3 / 2.1 / 2) = - 3 #

Giải trình:

Tôi nghĩ rằng chúng ta phải tính toán các dẫn xuất một phần.

Đây, #f (x, y) = x ^ 2 + 13y ^ 2-6xy-4y-2 #

Các dẫn xuất một phần đầu tiên là

# (delf) / (delx) = 2x-6y #

# (delf) / (dely) = 26y-6x-4 #

Những điểm quan trọng là

# {(2x-6y = 0), (26y-6x-4 = 0):} #

#<=>#, # {(3y = x), (26y-6 * 3y-4 = 0):} #

#<=>#, # {(3y = x), (8y = 4):} #

#<=>#, # {(x = 3/2), (y = 1/2):} #

Các đạo hàm riêng thứ hai là

# (del ^ 2f) / (delx ^ 2) = 2 #

# (del ^ 2f) / (mất ^ 2) = 26 #

# (del ^ 2f) / (delxdely) = - 6 #

# (del ^ 2f) / (delydelx) = - 6 #

Yếu tố quyết định của ma trận Hessian là

#D (x, y) = | ((del ^ 2f) / (delx ^ 2), (del ^ 2f) / (delxdely)), ((del ^ 2f) / (dely ^ 2), (del ^ 2f) / (delydelx)) | #

#=|(2,-6),(-6,26)|#

#=52-36#

#=16>0#

Như #D (x, y)> 0 #

# (del ^ 2f) / (delx ^ 2) = 2> 0 #

Có một mức tối thiểu tương đối tại #(3/2,1/2)#

#f (3 / 2.1 / 2) = 1.5 ^ 2 + 13 * 0.5 ^ 2-6 * 1.5 * 0.5-4 * 0.5-2 = -3 #