Câu trả lời:
Xem bên dưới
Giải trình:
Thứ nhất, miền của hàm là bất kỳ giá trị nào của
Do đó, trong trường hợp này, miền là nơi mẫu số bằng
Đây là
Nếu chúng ta tính đến điều này, chúng ta sẽ nhận được
Vì vậy, tên miền là tất cả các giá trị của
Để tìm phạm vi của một hàm hợp lý, bạn có thể nhìn vào biểu đồ của nó. Để phác họa một biểu đồ, bạn có thể tìm các tiệm cận dọc / xiên / ngang của nó và sử dụng bảng giá trị.
Đây là biểu đồ đồ thị {(x + 1) / (x ^ 2-7x + 10) -2.735, 8.365, -2.862, 2.688}
Bạn có thể thấy phạm vi là gì? Hãy nhớ rằng, phạm vi của một chức năng là số tiền bạn có thể ra khỏi chức năng; Thấp nhất có thể
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Tên miền và phạm vi của 3x-2 / 5x + 1 là gì và miền và phạm vi nghịch đảo của hàm là gì?
Tên miền là tất cả các thực, ngoại trừ -1/5 là phạm vi của nghịch đảo. Phạm vi là tất cả các thực, ngoại trừ 3/5 là miền của nghịch đảo. f (x) = (3x-2) / (5x + 1) được xác định và giá trị thực cho tất cả x ngoại trừ -1/5, do đó, đó là miền của f và phạm vi của f ^ -1 Đặt y = (3x -2) / (5x + 1) và giải cho x thu được 5xy + y = 3x-2, do đó 5xy-3x = -y-2, và do đó (5y-3) x = -y-2, do đó, cuối cùng là x = (- y-2) / (5y-3). Chúng ta thấy rằng y! = 3/5. Vì vậy, phạm vi của f là tất cả các số thực trừ 3/5.
Nếu f (x) = 3x ^ 2 và g (x) = (x-9) / (x + 1) và x! = - 1, thì f (g (x)) sẽ bằng bao nhiêu? g (f (x))? f ^ -1 (x)? Tên miền, phạm vi và số không cho f (x) sẽ là gì? Tên miền, phạm vi và số không cho g (x) sẽ là gì?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x trong RR}, R_f = {f (x) bằng RR; f (x)> = 0} D_g = {x trong RR; x! = - 1}, R_g = {g (x) bằng RR; g (x)! = 1}