Câu trả lời:
Giải trình:
Để trả lời câu hỏi này, đáng để xem xét bổ đề nhỏ sau đây:
Tổng ba số liên tiếp bằng ba lần số giữa
Bằng chứng là ngay lập tức: nếu chúng ta gọi số giữa
Bây giờ chúng tôi có kết quả này, chúng tôi có thể thay đổi câu hỏi từ
Tổng ba số liên tiếp là 72
đến
Ba lần số giữa là 72
Điều này làm cho nó ngay lập tức để thấy rằng số giữa là
Vì vậy, ba số là
Biết công thức tính tổng của N số nguyên a) tổng của số nguyên N liên tiếp đầu tiên là bao nhiêu, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Tổng các số nguyên N liên tiếp đầu tiên Sigma_ (k = 1) ^ N k ^ 3?
Với S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ta có sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 tổng_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 giải cho sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni nhưng sum_ {i = 0} ^ ni = ((n + 1) n) / 2 nên sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
Đặt A là tập hợp của tất cả các vật liệu tổng hợp nhỏ hơn 10 và B là tập hợp các số nguyên dương chẵn nhỏ hơn 10. Có bao nhiêu tổng khác nhau có dạng a + b nếu a nằm trong A và b nằm trong B?
16 dạng khác nhau của a + b. 10 khoản tiền độc đáo. Tập hợp bb (A) Một hỗn hợp là một số có thể chia đều cho một số nhỏ hơn 1. Ví dụ, 9 là tổng hợp (9/3 = 3) nhưng 7 thì không (một cách khác để nói đây là một tổng hợp số không phải là số nguyên tố). Tất cả điều này có nghĩa là tập hợp A bao gồm: A = {4,6,8,9} Tập hợp bb (B) B = {2,4,6,8} Bây giờ chúng tôi được hỏi về số tiền khác nhau trong dạng a + b trong đó a ở A, b ở B. Trong một lần đọc bài toán này, tôi muốn nói có 16 d
Số nguyên nhỏ nhất trong 3 số nguyên dương liên tiếp là bao nhiêu nếu tích của hai số nguyên nhỏ hơn nhỏ hơn 5 lần số nguyên lớn nhất?
Đặt số nhỏ nhất là x, và số thứ hai và thứ ba là x + 1 và x + 2. (x) (x + 1) = (5 (x + 2)) - 5 x ^ 2 + x = 5x + 10 - 5 x ^ 2 - 4x - 5 = 0 (x - 5) (x + 1) = 0 x = 5 và-1 Vì các số phải dương, số nhỏ nhất là 5.