Tìm dy / dx của y = sin (cx) sin ^ c (x)?

Tìm dy / dx của y = sin (cx) sin ^ c (x)?
Anonim

Câu trả lời:

# dy / dx = csin (cx) cos (x) sin ^ (c-1) (x) + csin ^ c (x) cos (cx) = csin (x) ^ (c-1) sin (cx + x) #

Giải trình:

Đối với một chức năng nhất định # y = f (x) = uv # Ở đâu # u ## v # là cả hai chức năng của # x # chúng tôi nhận được:

# dy / dx = u'v + v'u #

# u = sin (cx) #

# u '= c cos (cx) #

# v = sin ^ c (x) #

# v '= c cos (x) sin ^ (c-1) (x) #

# dy / dx = csin (cx) cos (x) sin ^ (c-1) (x) + csin ^ c (x) cos (cx) = csin (x) ^ (c-1) sin (cx + x) #