Câu trả lời:
Giải trình:
Các số liên tiếp là những số theo sau nhau, trong đó một số nhiều hơn 1 so với số trước.
Xác định các số đầu tiên.
Đặt số nhỏ hơn
Số lượng lớn hơn là
Tổng của chúng là 63, vì vậy chúng ta có thể viết một phương trình:
Nếu số nhỏ hơn là 31, số tiếp theo là 32.
Kiểm tra
Câu trả lời:
Hai số liên tiếp là
Giải trình:
Đặt hai số liên tiếp là
Vì vậy, cho rằng
hoặc là
hoặc là
hoặc là
hoặc là
hoặc là
Do đó hai số liên tiếp là
Câu trả lời:
Giải trình:
Đặt số đầu tiên là
Vì thế,
Một số là
Hi vo ng điêu nay co ich!:)
Hai lần tổng của số nguyên thứ nhất và số thứ hai vượt quá hai lần số nguyên thứ ba bằng ba mươi hai. Ba số nguyên liên tiếp là gì?
Các số nguyên là 17, 18 và 19 Bước 1 - Viết dưới dạng phương trình: 2 (x + x + 1) = 2 (x + 2) + 32 Bước 2 - Mở rộng dấu ngoặc và đơn giản hóa: 4x + 2 = 2x + 36 Bước 3 - Trừ 2x từ cả hai phía: 2x + 2 = 36 Bước 4 - Trừ 2 từ cả hai bên 2x = 34 Bước 5 - Chia cả hai bên cho 2 x = 17 do đó x = 17, x + 1 = 18 và x + 2 = 19
Biết công thức tính tổng của N số nguyên a) tổng của số nguyên N liên tiếp đầu tiên là bao nhiêu, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Tổng các số nguyên N liên tiếp đầu tiên Sigma_ (k = 1) ^ N k ^ 3?
Với S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ta có sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 tổng_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 giải cho sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni nhưng sum_ {i = 0} ^ ni = ((n + 1) n) / 2 nên sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
"Lena có 2 số nguyên liên tiếp.Cô nhận thấy rằng tổng của chúng bằng với sự khác biệt giữa các hình vuông của chúng. Lena chọn thêm 2 số nguyên liên tiếp và thông báo điều tương tự. Chứng minh đại số rằng điều này đúng với 2 số nguyên liên tiếp?
Vui lòng tham khảo Giải thích. Hãy nhớ rằng các số nguyên liên tiếp khác nhau 1. Do đó, nếu m là một số nguyên, thì số nguyên tiếp theo phải là n + 1. Tổng của hai số nguyên này là n + (n + 1) = 2n + 1. Sự khác biệt giữa các hình vuông của chúng là (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, như mong muốn! Cảm nhận niềm vui của toán học.!