Bước 1: Xác định tọa độ của điểm cuối K
Bước 2: Sử dụng Định lý Pythagore để xác định độ dài
Bước 1
Nếu M là trung điểm của JK thì những thay đổi trong
Tọa độ của K là
Bước 2:
dựa trên định lý Pythagore
Trên lưới tọa độ AB có điểm cuối B tại (24,16), trung điểm của AB là P (4, -3), tọa độ Y của điểm A là gì?
Chúng ta hãy lấy tọa độ x và y riêng biệt x và y của trung điểm là giá trị trung bình của điểm cuối. Nếu P là trung điểm thì: x_P = (x_A + x_B) / 2-> 4 = (x_A + 24) / 2-> x_A = -16 y_P = (y_A + y_B) / 2 -> - 3 = (y_A + 16) / 2-> y_A = -22
Tốc độ thay đổi của chiều rộng (tính bằng ft / giây) là bao nhiêu khi chiều cao là 10 feet, nếu chiều cao đang giảm tại thời điểm đó với tốc độ 1 ft / giây. Hình chữ nhật có cả chiều cao thay đổi và chiều rộng thay đổi , nhưng chiều cao và chiều rộng thay đổi để diện tích của hình chữ nhật luôn là 60 feet vuông?
Tốc độ thay đổi của chiều rộng theo thời gian (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Vậy (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Vậy (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Vậy khi h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
Các điểm (mật9, 2) và (mật5, 6) là các điểm cuối của đường kính của một vòng tròn Chiều dài của đường kính là bao nhiêu? Điểm trung tâm C của đường tròn là gì? Cho điểm C bạn tìm thấy trong phần (b), hãy nêu điểm đối xứng với C về trục x
D = sqrt (32) = 4sqrt (2) ~ ~ 5,66 tâm, C = (-7, 4) điểm đối xứng về trục x: (-7, -4) Cho: điểm cuối của đường kính của hình tròn: (- 9, 2), (-5, 6) Sử dụng công thức khoảng cách để tìm độ dài của đường kính: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~ ~ 5.66 Sử dụng công thức trung điểm để tìm trung tâm: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Sử dụng quy tắc tọa độ để phản ánh về trục x (x, y) ->