Câu trả lời:
Câu trả lời là
Giải trình:
Vectơ vuông góc với 2 vectơ khác được cho bởi sản phẩm chéo.
Xác minh bằng cách thực hiện các sản phẩm chấm
Mô-đun của
Vectơ đơn vị thu được bằng cách chia vectơ cho mô đun
Vectơ đơn vị trực giao với mặt phẳng chứa (i + j - k) và (i - j + k) là gì?
Chúng ta biết rằng nếu vec C = vec A × vec B thì vec C vuông góc với cả vec A và vec B Vì vậy, điều chúng ta cần chỉ là tìm sản phẩm chéo của hai vectơ đã cho. Vì vậy, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Vì vậy, vectơ đơn vị là (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Vectơ đơn vị trực giao với mặt phẳng chứa (20j + 31k) và (32i-38j-12k) là gì?
Vectơ đơn vị là == 1 / 1507.8 <938,992, -640> Vectơ trực giao với 2 vectros trong một mặt phẳng được tính với định thức | (veci, vecj, veck), (d, e, f), (g, h, i) | Trong đó 〈d, e, f〉 và g, h, i là 2 vectơ Ở đây, chúng ta có veca = 〈0,20,31〉 và vecb = 〈32, -38, -12 Do đó, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 〈938,992, -640〉 = vecc Xác minh bằng cách thực hiện 2 dấu chấm sản phẩm 93
Vectơ đơn vị trực giao với mặt phẳng chứa (29i-35j-17k) và (41j + 31k) là gì?
Vectơ đơn vị là = 1 / 1540.3 -388, -899,1189 Vectơ vuông góc với 2 vectơ được tính với định thức (tích chéo) | (veci, vecj, veck), (d, e, f), (g, h, i) | Trong đó 〈d, e, f〉 và g, h, i là 2 vectơ Ở đây, chúng ta có veca = 〈29, -35, -17 và vecb = 〈0,41,31〉 Do đó, | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + veck | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = - 388, -899,1189〉 = vecc Xác minh bằng cách thực hiện 2 sản phẩm chấm