Miền của f (x) là tập hợp của tất cả các giá trị thực trừ 7 và miền của g (x) là tập hợp của tất cả các giá trị thực trừ -3. Tên miền của (g * f) (x) là gì?
Tất cả các số thực trừ 7 và -3 khi bạn nhân hai hàm, chúng ta đang làm gì? chúng ta đang lấy giá trị f (x) và nhân nó với giá trị g (x), trong đó x phải giống nhau. Tuy nhiên cả hai chức năng đều có các hạn chế, 7 và -3, do đó, sản phẩm của hai chức năng, phải có các hạn chế * cả *. Thông thường khi có các thao tác trên các hàm, nếu các hàm trước đó (f (x) và g (x)) có các hạn chế, chúng luôn được coi là một phần của hạn chế mới của hàm
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Miền của hàm kết hợp h (x) = f (x) - g (x) là gì, nếu miền của f (x) = (4,4,5] và miền của g (x) là [4, 4,5 )?
Tên miền là D_ {f-g} = (4,4,5). Xem giải thích. (f - g) (x) chỉ có thể được tính cho những x, trong đó cả f và g được xác định. Vì vậy, chúng ta có thể viết rằng: D_ {f-g} = D_fnnD_g Ở đây chúng ta có D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)