Câu trả lời:
biểu tượng đặc biệt tôi được sử dụng để biểu thị căn bậc hai của âm 1,
Giải trình:
Chúng ta biết không có thứ như vậy trong vũ trụ số thực như
1 1 = 1 và -1 -1 cũng là 1. Rõ ràng 1 * -1 = -1, nhưng 1 và -1 không phải là cùng một số. Cả hai đều có cùng độ lớn (khoảng cách từ 0), nhưng chúng không giống nhau.
Vì vậy, khi chúng ta có một số liên quan đến căn bậc hai âm, toán học đã phát triển một kế hoạch để giải quyết vấn đề đó bằng cách nói rằng bất cứ khi nào chúng ta gặp phải vấn đề đó, chúng ta làm cho số của mình trở nên tích cực để chúng ta có thể giải quyết và đưa ra tôi cuối cùng.
Vì vậy, trong trường hợp của bạn
Lưu ý rằng vì 45 = 9 * 5, câu trả lời của bạn có thể được đơn giản hóa thành:
Thuật ngữ thứ 20 của một chuỗi số học là log20 và thuật ngữ thứ 32 là log32. Chính xác một thuật ngữ trong chuỗi là một số hữu tỷ. Số hữu tỉ là gì?
Thuật ngữ thứ mười là log10, bằng 1. Nếu thuật ngữ thứ 20 là log 20 và thuật ngữ thứ 32 là log32, thì nó có nghĩa là thuật ngữ thứ mười là log10. Nhật ký10 = 1. 1 là số hữu tỉ. Khi một bản ghi được viết mà không có "cơ sở" (chỉ mục sau bản ghi), cơ sở 10 được ngụ ý. Điều này được gọi là "nhật ký chung". Đăng nhập cơ sở 10 của 10 bằng 1, vì 10 đến công suất đầu tiên là một. Một điều hữu ích cần nhớ là "câu trả lời cho nhật ký là số mũ". Một số hữu tỷ là một
Các thuật ngữ thứ 2, 6 và 8 của một tiến trình Số học là ba thuật ngữ liên tiếp của một hình học.P. Làm cách nào để tìm tỷ lệ chung của G.P và có được biểu thức cho số hạng thứ n của G.P?
Phương pháp của tôi không giải quyết nó! Tổng số viết lại r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Để làm cho sự khác biệt giữa hai chuỗi rõ ràng tôi đang sử dụng ký hiệu sau: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + màu (trắng) (5) d =
Thuật ngữ thứ hai của một chuỗi số học là 24 và thuật ngữ thứ năm là 3. Thuật ngữ đầu tiên và sự khác biệt phổ biến là gì?
Học kỳ đầu tiên 31 và sự khác biệt chung -7 Hãy để tôi bắt đầu bằng cách nói bạn có thể thực sự làm điều này như thế nào, sau đó chỉ cho bạn cách bạn nên làm điều đó ... Trong nhiệm kỳ thứ 2 đến thứ 5 của chuỗi số học, chúng tôi thêm sự khác biệt chung 3 lần. Trong ví dụ của chúng tôi có kết quả từ 24 đến 3, thay đổi -21. Vì vậy, ba lần chênh lệch phổ biến là -21 và chênh lệch phổ biến là -21/3 = -7 Để có được từ học kỳ 2 trở lại lần thứ nhất, chúng ta cần trừ đi sự