Câu trả lời:
Tên miền f (x):
Giải trình:
Để xác định tên miền, chúng ta cần xem phần nào của hàm giới hạn tên miền. Trong một phân số, nó là mẫu số. Trong một hàm căn bậc hai, nó là những gì bên trong căn bậc hai.
Do đó, trong trường hợp của chúng tôi, nó là
Trong một phân số, mẫu số không bao giờ có thể bằng 0 (đó là lý do tại sao mẫu số là phần hạn chế của hàm).
Vì vậy, chúng tôi đặt:
Trên đây có nghĩa là:
Cung cấp cho chúng tôi:
Do đó, miền của hàm là tất cả các số thực, NGOẠI TRỪ
Theo thứ tự từ, tên miền f (x):
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Tên miền và phạm vi của 3x-2 / 5x + 1 là gì và miền và phạm vi nghịch đảo của hàm là gì?
Tên miền là tất cả các thực, ngoại trừ -1/5 là phạm vi của nghịch đảo. Phạm vi là tất cả các thực, ngoại trừ 3/5 là miền của nghịch đảo. f (x) = (3x-2) / (5x + 1) được xác định và giá trị thực cho tất cả x ngoại trừ -1/5, do đó, đó là miền của f và phạm vi của f ^ -1 Đặt y = (3x -2) / (5x + 1) và giải cho x thu được 5xy + y = 3x-2, do đó 5xy-3x = -y-2, và do đó (5y-3) x = -y-2, do đó, cuối cùng là x = (- y-2) / (5y-3). Chúng ta thấy rằng y! = 3/5. Vì vậy, phạm vi của f là tất cả các số thực trừ 3/5.
Nếu f (x) = 3x ^ 2 và g (x) = (x-9) / (x + 1) và x! = - 1, thì f (g (x)) sẽ bằng bao nhiêu? g (f (x))? f ^ -1 (x)? Tên miền, phạm vi và số không cho f (x) sẽ là gì? Tên miền, phạm vi và số không cho g (x) sẽ là gì?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x trong RR}, R_f = {f (x) bằng RR; f (x)> = 0} D_g = {x trong RR; x! = - 1}, R_g = {g (x) bằng RR; g (x)! = 1}