Phương trình bậc hai 4px ^ 2 +4 (p + a) x + p + b = 0 không có bất kỳ gốc thực sự. Tìm phạm vi giá trị của p theo a và b?

Phương trình bậc hai 4px ^ 2 +4 (p + a) x + p + b = 0 không có bất kỳ gốc thực sự. Tìm phạm vi giá trị của p theo a và b?
Anonim

Câu trả lời:

Xin vui lòng xem giải thích dưới đây.

Giải trình:

Phương trình bậc hai là

# 4px ^ 2 + 4 (p + a) x + (p + b) = 0 #

Để phương trình này không có gốc thực sự, phân biệt đối xử phải là #Delta <0 #

Vì thế, # Delta = (4 (p + a)) ^ 2-4 (4p) (p + b) <0 #

#=>#, # (p + a) ^ 2-p (p + b) <0 #

#=>#, # p ^ 2 + 2ap + a ^ 2-p ^ 2-pb <0 #

#=>#, # 2ap-pb <-a ^ 2 #

#=>#, # p (2a-b) <a ^ 2 #

Vì thế, #p <- (a ^ 2) / (2a-b) #

#p <(a ^ 2) / (b-2a) #

Điều kiện:

# b-2a! = 0 #

Do đó, phạm vi là

#p trong (-oo, a ^ 2 / (b-2a)) #