Câu trả lời:
Giải trình:
# "tính độ dốc m bằng cách sử dụng công thức gradient" màu (màu xanh) "#
# • màu (trắng) (x) m = (y_2-y_1) / (x_2-x_1) #
# "let" (x_1, y_1) = (8, -5) "và" (x_2, y_2) = (k, 2) #
# rArrm = (2 - (- 5)) / (k-8) = 7 / (k-8) #
# "chúng tôi được cho" m = 3/4 #
# rArr7 / (k-8) = 3 / 4larrcolor (màu xanh) "nhân chéo" #
# rArr3 (k-8) = 28 #
# "chia cả hai bên cho 3" #
# rArrk-8 = 28/3 #
# "thêm 8 cho cả hai bên" #
# rArrk = 28/3 + 24/3 = 52/3 #
Một đoạn đường có điểm cuối tại (a, b) và (c, d). Đoạn đường bị giãn bởi hệ số r xung quanh (p, q). Các điểm cuối và chiều dài mới của đoạn đường là gì?
(a, b) đến ((1-r) p + ra, (1-r) q + rb), (c, d) đến ((1-r) p + rc, (1-r) q + rd), độ dài mới l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Tôi có một lý thuyết tất cả những câu hỏi này đều ở đây vì vậy có một cái gì đó cho người mới làm. Tôi sẽ làm trường hợp chung ở đây và xem điều gì sẽ xảy ra. Chúng tôi dịch mặt phẳng để điểm giãn nở P ánh xạ tới điểm gốc. Sau đó, sự giãn nở quy mô tọa độ theo hệ số r. Sau đó, chúng tôi dịch mặt phẳng trở lại: A '= r (A - P) + P = (1-r) P + r A Đó l
Chứng minh rằng đã cho một đường thẳng và điểm không nằm trên đường thẳng đó, có chính xác một đường thẳng đi qua điểm đó vuông góc qua đường thẳng đó không? Bạn có thể làm điều này một cách toán học hoặc thông qua xây dựng (người Hy Lạp cổ đại đã làm)?
Xem bên dưới. Giả sử rằng Đường thẳng đã cho là AB và điểm là P, không nằm trên AB. Bây giờ, giả sử, chúng ta đã vẽ PO vuông góc trên AB. Chúng ta phải chứng minh rằng, PO này là đường duy nhất đi qua P vuông góc với AB. Bây giờ, chúng tôi sẽ sử dụng một công trình. Chúng ta hãy xây dựng một PC vuông góc khác trên AB từ điểm P. Bây giờ là Bằng chứng. Chúng ta có, OP vuông góc AB [Tôi không thể sử dụng dấu vuông góc, cách
Các điểm (mật9, 2) và (mật5, 6) là các điểm cuối của đường kính của một vòng tròn Chiều dài của đường kính là bao nhiêu? Điểm trung tâm C của đường tròn là gì? Cho điểm C bạn tìm thấy trong phần (b), hãy nêu điểm đối xứng với C về trục x
D = sqrt (32) = 4sqrt (2) ~ ~ 5,66 tâm, C = (-7, 4) điểm đối xứng về trục x: (-7, -4) Cho: điểm cuối của đường kính của hình tròn: (- 9, 2), (-5, 6) Sử dụng công thức khoảng cách để tìm độ dài của đường kính: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~ ~ 5.66 Sử dụng công thức trung điểm để tìm trung tâm: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Sử dụng quy tắc tọa độ để phản ánh về trục x (x, y) ->