Là f (x) = xe ^ x-3x tăng hay giảm tại x = -3?

Là f (x) = xe ^ x-3x tăng hay giảm tại x = -3?
Anonim

Câu trả lời:

Đạo hàm tại # x = -3 # là tiêu cực, vì vậy nó đang giảm.

Giải trình:

#f (x) = x * e ^ x-3x #

#f '(x) = (x * e ^ x-3x)' = (x * e ^ x) '- (3x)' = #

# = (x) 'e ^ x + x * (e ^ x)' - (3x) '= 1 * e ^ x + x * e ^ x-3 = #

# = e ^ x * (1 + x) -3 #

#f '(x) = e ^ x * (1 + x) -3 #

Tại # x = -3 #

#f '(- 3) = e ^ (- 3) * (1-3) -3 = -2 / e ^ 3-3 = - (2 / e ^ 3 + 3) #

Kể từ khi # 2 / e ^ 3 + 3 # là dương, dấu trừ làm cho:

#f '(- 3) <0 #

Các chức năng đang giảm. Bạn cũng có thể thấy điều này trong biểu đồ.

đồ thị {x * e ^ x-3x -4.576, -0.732, 7.793, 9.715}