X là gì nếu log_4 x = 1/2 + log_4 (x-1)?

X là gì nếu log_4 x = 1/2 + log_4 (x-1)?
Anonim

Câu trả lời:

# x = 2 #

Giải trình:

Như # log_4 x = 1/2 + log_4 (x-1) #

# log_4x-log_4 (x-1) = 1/2 #

hoặc là # log_4 (x / (x-1)) = 1/2 #

I E. # x / (x-1) = 4 ^ (1/2) = 2 #

# x = 2x-2 #

I E. # x = 2 #

Câu trả lời:

# x = 2 #.

Giải trình:

# log_4x = 1/2 + log_4 (x-1) #.

#:. log_4 x-log_x (x-1) = 1/2 #.

#:. log_4 {x / (x-1)} = 1/2 … vì, log_bm-log_bn = log_b (m / n) #.

#:. {x / (x-1)} = 4 ^ (1/2) = 2, … bởi vì, "định nghĩa của" log #.

#:. x = 2 (x-1) = 2x-2 #.

#:. -x = -2, hoặc, x = 2 #.

Điều này gốc thỏa mãn các cho eqn.

#:. x = 2 #.