Câu trả lời:
Hãy nhớ rằng hình thức tiêu chuẩn của tứ giác là
Giải trình:
là hình thức bao thanh toán.
Bây giờ bạn muốn mở rộng nó, vì vậy bạn có thể sử dụng FOIL (hoặc Đầu tiên, Bên ngoài, Bên trong, Cuối cùng)
Nói cách khác trong trường hợp này bạn thực sự sẽ phân phát các điều khoản trong ngoặc đơn đầu tiên với các điều khoản trong ngoặc đơn thứ hai.
Bạn sẽ có một cái gì đó như:
Sau đó, bạn chỉ còn lại để nhân từng điều khoản.
Kết hợp các điều khoản như bây giờ để có được
Dạng chuẩn của phương trình của một parabol là y = 2x ^ 2 + 16x + 17. Dạng đỉnh của phương trình là gì?
Dạng đỉnh chung là y = a (x-h) ^ 2 + k. Xin vui lòng xem giải thích cho các hình thức đỉnh cụ thể. "A" ở dạng tổng quát là hệ số của số hạng vuông ở dạng chuẩn: a = 2 Tọa độ x trong đỉnh, h, được tìm thấy bằng cách sử dụng công thức: h = -b / (2a) h = - 16 / (2 (2) h = -4 Tọa độ y của đỉnh, k, được tìm thấy bằng cách đánh giá hàm đã cho tại x = h: k = 2 (-4) ^ 2 + 16 (-4) +17 k = -15 Thay thế các giá trị vào dạng tổng quát: y = 2 (x - 4) ^ 2-15 thu hẹp dạng đỉnh cụ thể
Dạng đỉnh của phương trình của một parabol là x = (y - 3) ^ 2 + 41, dạng chuẩn của phương trình là gì?
Y = + - sqrt (x-41) +3 Chúng ta cần giải cho y. Khi chúng ta đã thực hiện điều đó, chúng ta có thể điều khiển phần còn lại của vấn đề (nếu cần) để thay đổi nó theo dạng chuẩn: x = (y-3) ^ 2 + 41 trừ 41 ở cả hai bên x-41 = (y -3) ^ 2 lấy căn bậc hai của cả hai màu (đỏ) (+ -) sqrt (x-41) = y-3 thêm 3 vào cả hai bên y = + - sqrt (x-41) +3 hoặc y = 3 + -sqrt (x-41) Dạng chuẩn của các hàm Square Root là y = + - sqrt (x) + h, vì vậy câu trả lời cuối cùng của chúng ta phải là y = + - sqrt (x-41) +3
Dạng đỉnh của phương trình của một parabol là y + 10 = 3 (x - 1) ^ 2 dạng chuẩn của phương trình là gì?
Y = 3x ^ 2 -6x-7 Đơn giản hóa phương trình đã cho là y + 10 = 3 (x ^ 2 -2x +1) Do đó y = 3x ^ 2 -6x + 3-10 Hoặc, y = 3x ^ 2 -6x- 7, đó là hình thức tiêu chuẩn bắt buộc.