Câu trả lời:
Miền:
Phạm vi:
Giải trình:
Để tìm miền của hàm, bạn cần tính đến thực tế là, đối với các số thực, bạn chỉ có thể lấy căn bậc hai của một số dương.
Nói cách khác, trong hàm oerder cho hàm được xác định, bạn cần biểu thức dưới căn bậc hai là dương.
# 9 - x ^ 2> = 0 #
# x ^ 2 <= 9 ngụ ý | x | <= 3 #
Điều này có nghĩa là bạn có
#x> = -3 "" # và# "" x <= 3 #
Đối với bất kỳ giá trị nào của
Bây giờ cho phạm vi. Đối với bất kỳ giá trị nào của
Các tối đa giá trị biểu thức dưới gốc có thể mất là cho
#9 - 0^2 = 9#
có nghĩa là tối thiểu giá trị của hàm sẽ là
#y = -sqrt (9) = -3 #
Do đó, phạm vi của hàm sẽ là
đồ thị {-sqrt (9-x ^ 2) -10, 10, -5, 5}
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Tên miền và phạm vi của 3x-2 / 5x + 1 là gì và miền và phạm vi nghịch đảo của hàm là gì?
Tên miền là tất cả các thực, ngoại trừ -1/5 là phạm vi của nghịch đảo. Phạm vi là tất cả các thực, ngoại trừ 3/5 là miền của nghịch đảo. f (x) = (3x-2) / (5x + 1) được xác định và giá trị thực cho tất cả x ngoại trừ -1/5, do đó, đó là miền của f và phạm vi của f ^ -1 Đặt y = (3x -2) / (5x + 1) và giải cho x thu được 5xy + y = 3x-2, do đó 5xy-3x = -y-2, và do đó (5y-3) x = -y-2, do đó, cuối cùng là x = (- y-2) / (5y-3). Chúng ta thấy rằng y! = 3/5. Vì vậy, phạm vi của f là tất cả các số thực trừ 3/5.
Nếu f (x) = 3x ^ 2 và g (x) = (x-9) / (x + 1) và x! = - 1, thì f (g (x)) sẽ bằng bao nhiêu? g (f (x))? f ^ -1 (x)? Tên miền, phạm vi và số không cho f (x) sẽ là gì? Tên miền, phạm vi và số không cho g (x) sẽ là gì?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x trong RR}, R_f = {f (x) bằng RR; f (x)> = 0} D_g = {x trong RR; x! = - 1}, R_g = {g (x) bằng RR; g (x)! = 1}