Câu trả lời:
Giải trình:
Nếu bạn đang học
dom
Elsif bạn đang học
dom
Câu trả lời:
Miền của mối quan hệ là: {-3, 1, 6}.
Giải trình:
Miền của một mối quan hệ là tập hợp tất cả các số xuất hiện đầu tiên trong một cặp có thứ tự trong mối quan hệ.
Dành cho
Một tập hợp hoàn toàn được xác định bởi yếu tố của nó - nghĩa là, bởi những thứ trong tập hợp, bất kể thứ tự trình bày sự lặp lại, vì vậy tập hợp:
{-3, 1, 6}. Tôi chỉ đơn giản là chọn viết các yếu tố của tên miền theo thứ tự tăng dần.
Nhân tiện
Vì mối quan hệ có hai cặp khác nhau có cùng phần tử đầu tiên, nên mối quan hệ này không phải là một hàm.
Miền của f (x) là tập hợp của tất cả các giá trị thực trừ 7 và miền của g (x) là tập hợp của tất cả các giá trị thực trừ -3. Tên miền của (g * f) (x) là gì?
Tất cả các số thực trừ 7 và -3 khi bạn nhân hai hàm, chúng ta đang làm gì? chúng ta đang lấy giá trị f (x) và nhân nó với giá trị g (x), trong đó x phải giống nhau. Tuy nhiên cả hai chức năng đều có các hạn chế, 7 và -3, do đó, sản phẩm của hai chức năng, phải có các hạn chế * cả *. Thông thường khi có các thao tác trên các hàm, nếu các hàm trước đó (f (x) và g (x)) có các hạn chế, chúng luôn được coi là một phần của hạn chế mới của hàm
Hàm f sao cho f (x) = a ^ 2x ^ 2-ax + 3b với x <1 / (2a) Trong đó a và b không đổi trong trường hợp a = 1 và b = -1 Tìm f ^ - 1 (cf và tìm tên miền của nó Tôi biết miền của f ^ -1 (x) = phạm vi của f (x) và đó là -13/4 nhưng tôi không biết hướng bất bình đẳng?
Xem bên dưới. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Phạm vi: Đặt vào dạng y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Giá trị tối thiểu -13/4 Điều này xảy ra tại x = 1/2 Vì vậy, phạm vi là (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Sử dụng công thức bậc hai: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Với một chút suy nghĩ, chúng ta có thể thấy rằng đối với miền chúng ta có nghịch đảo b
Miền của hàm kết hợp h (x) = f (x) - g (x) là gì, nếu miền của f (x) = (4,4,5] và miền của g (x) là [4, 4,5 )?
Tên miền là D_ {f-g} = (4,4,5). Xem giải thích. (f - g) (x) chỉ có thể được tính cho những x, trong đó cả f và g được xác định. Vì vậy, chúng ta có thể viết rằng: D_ {f-g} = D_fnnD_g Ở đây chúng ta có D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)