Theo định nghĩa, căn bậc ba của một số
Ngoài việc sử dụng máy tính, tất nhiên, bạn có thể xem nếu một số
Bao thanh toán
Dù sao, chúng ta có thể nói rằng căn bậc ba của
Bằng cách sử dụng công thức
gấp bốn lần căn bậc ba của
Hình thức đơn giản của căn bậc hai của 10 - căn bậc hai của 5 trên căn bậc hai của 10 + căn bậc hai của 5 là gì?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) màu (trắng) ("XXX") = hủy (sqrt (5)) / hủy (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) màu (trắng) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) màu (trắng) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) màu (trắng) ("XXX") = (2-2sqrt2 + 1) / (2-1) màu (trắng) ("XXX") = 3-2sqrt (2)
Căn bậc hai của 3 + căn bậc hai của 72 - căn bậc hai của 128 + căn bậc hai của 108 là gì?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Chúng ta biết rằng 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, vì vậy sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Chúng tôi biết rằng 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, vì vậy sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Chúng tôi biết rằng 128 = 2 ^ 7 , vì vậy sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Đơn giản hóa 7sqrt (3) - 2sqrt (2)
Căn bậc hai của 7 + căn bậc hai của 7 ^ 2 + căn bậc hai của 7 ^ 3 + căn bậc hai của 7 ^ 4 + căn bậc hai của 7 ^ 5 là gì?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Điều đầu tiên chúng ta có thể làm là hủy bỏ các gốc trên những cái có quyền hạn chẵn. Vì: sqrt (x ^ 2) = x và sqrt (x ^ 4) = x ^ 2 cho bất kỳ số nào, chúng tôi chỉ có thể nói rằng sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Bây giờ, 7 ^ 3 có thể được viết lại thành 7 ^ 2 * 7, và 7 ^ 2 có thể thoát ra khỏi thư mục gốc! Điều tương tự cũng áp dụng cho 7 ^ 5 nhưng nó