Câu trả lời:
Các số nguyên là
Giải trình:
Đặt ba số nguyên liên tiếp là
Vì vậy, chúng ta có thể viết tổng của những
hoặc là
hoặc là
hoặc là
do đó các số nguyên là
Câu trả lời:
Giải trình:
Gọi số giữa
Tổng kết:
Số ở giữa là 139 nên số là 138, 139, 140
Ba số nguyên liên tiếp có thể được biểu diễn bằng n, n + 1 và n + 2. Nếu tổng của ba số nguyên liên tiếp là 57 thì số nguyên là gì?
18,19,20 Sum là phép cộng số nên tổng của n, n + 1 và n + 2 có thể được biểu diễn dưới dạng, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 nên số nguyên đầu tiên của chúng tôi là 18 (n) thứ hai của chúng tôi là 19, (18 + 1) và thứ ba của chúng tôi là 20, (18 + 2).
Biết công thức tính tổng của N số nguyên a) tổng của số nguyên N liên tiếp đầu tiên là bao nhiêu, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Tổng các số nguyên N liên tiếp đầu tiên Sigma_ (k = 1) ^ N k ^ 3?
Với S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ta có sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 tổng_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 giải cho sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni nhưng sum_ {i = 0} ^ ni = ((n + 1) n) / 2 nên sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
"Lena có 2 số nguyên liên tiếp.Cô nhận thấy rằng tổng của chúng bằng với sự khác biệt giữa các hình vuông của chúng. Lena chọn thêm 2 số nguyên liên tiếp và thông báo điều tương tự. Chứng minh đại số rằng điều này đúng với 2 số nguyên liên tiếp?
Vui lòng tham khảo Giải thích. Hãy nhớ rằng các số nguyên liên tiếp khác nhau 1. Do đó, nếu m là một số nguyên, thì số nguyên tiếp theo phải là n + 1. Tổng của hai số nguyên này là n + (n + 1) = 2n + 1. Sự khác biệt giữa các hình vuông của chúng là (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, như mong muốn! Cảm nhận niềm vui của toán học.!