Hãy để chúng tôi tìm thấy giới hạn ở vô cùng.
bằng cách chia tử số và mẫu số cho
và
Do đó, tiệm cận ngang của nó là
Họ trông như thế này:
Đồ thị của hàm f (x) = (x + 2) (x + 6) được hiển thị bên dưới. Phát biểu nào về hàm là đúng? Hàm này dương cho tất cả các giá trị thực của x trong đó x> Mạnh4. Hàm này là âm đối với tất cả các giá trị thực của x trong đó HP6 <x <.2.
Hàm này là âm đối với tất cả các giá trị thực của x trong đó HP6 <x <.2.
Chức năng hợp lý là gì và làm thế nào để bạn tìm thấy miền, tiệm cận dọc và ngang. Ngoài ra "lỗ hổng" với tất cả các giới hạn và liên tục và không liên tục là gì?
Hàm hợp lý là nơi có x 'dưới thanh phân số. Phần dưới thanh được gọi là mẫu số. Điều này đặt giới hạn cho miền của x, vì mẫu số có thể không hoạt động thành 0 Ví dụ đơn giản: y = 1 / x domain: x! = 0 Điều này cũng xác định tiệm cận đứng x = 0, vì bạn có thể tạo x gần đến 0 như bạn muốn, nhưng không bao giờ đạt được nó. Nó tạo ra sự khác biệt cho dù bạn di chuyển về 0 từ phía dương từ âm (xem biểu đồ). Chúng ta nói lim_ (x-> 0 ^ +) y = oo và lim_ (x-> 0 ^ -) y = -oo Vì vậy, có
Đâu là đặc điểm của đồ thị của hàm f (x) = (x + 1) ^ 2 + 2? Kiểm tra tất cả những gì áp dụng. Tên miền là tất cả các số thực. Phạm vi là tất cả các số thực lớn hơn hoặc bằng 1. Chặn y là 3. Đồ thị của hàm là 1 đơn vị trở lên và
Thứ nhất và thứ ba là đúng, thứ hai là sai, thứ tư là chưa hoàn thành. - Tên miền thực sự là tất cả các số thực. Bạn có thể viết lại hàm này dưới dạng x ^ 2 + 2x + 3, là một đa thức và như vậy có miền mathbb {R} Phạm vi không phải là tất cả số thực lớn hơn hoặc bằng 1, vì tối thiểu là 2. Trong thực tế. (x + 1) ^ 2 là bản dịch ngang (một đơn vị còn lại) của parabola "sợi" x ^ 2, có phạm vi [0, infty). Khi bạn thêm 2, bạn dịch chuyển đồ thị theo chiều dọc theo hai đơn vị, vì vậy phạm vi của b