Câu trả lời:
Ba số chẵn liên tiếp là
Giải trình:
Để cho
Do đó, hai số nguyên chẵn liên tiếp khác sẽ là:
Chúng tôi được cho biết
Ba số nguyên liên tiếp có thể được biểu diễn bằng n, n + 1 và n + 2. Nếu tổng của ba số nguyên liên tiếp là 57 thì số nguyên là gì?
18,19,20 Sum là phép cộng số nên tổng của n, n + 1 và n + 2 có thể được biểu diễn dưới dạng, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 nên số nguyên đầu tiên của chúng tôi là 18 (n) thứ hai của chúng tôi là 19, (18 + 1) và thứ ba của chúng tôi là 20, (18 + 2).
Biết công thức tính tổng của N số nguyên a) tổng của số nguyên N liên tiếp đầu tiên là bao nhiêu, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Tổng các số nguyên N liên tiếp đầu tiên Sigma_ (k = 1) ^ N k ^ 3?
Với S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ta có sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 tổng_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 giải cho sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni nhưng sum_ {i = 0} ^ ni = ((n + 1) n) / 2 nên sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
"Lena có 2 số nguyên liên tiếp.Cô nhận thấy rằng tổng của chúng bằng với sự khác biệt giữa các hình vuông của chúng. Lena chọn thêm 2 số nguyên liên tiếp và thông báo điều tương tự. Chứng minh đại số rằng điều này đúng với 2 số nguyên liên tiếp?
Vui lòng tham khảo Giải thích. Hãy nhớ rằng các số nguyên liên tiếp khác nhau 1. Do đó, nếu m là một số nguyên, thì số nguyên tiếp theo phải là n + 1. Tổng của hai số nguyên này là n + (n + 1) = 2n + 1. Sự khác biệt giữa các hình vuông của chúng là (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, như mong muốn! Cảm nhận niềm vui của toán học.!