Trước tiên bạn cần tìm
Thứ hai, thay thế bằng giá trị của x, trong trường hợp này
Độ dốc của đường cong
Đồ thị của đường thẳng l trong mặt phẳng xy đi qua các điểm (2,5) và (4,11). Đồ thị của đường thẳng m có độ dốc -2 và giao thoa x là 2. Nếu điểm (x, y) là điểm giao nhau của đường thẳng l và m thì giá trị của y là bao nhiêu?
Y = 2 Bước 1: Xác định phương trình của đường thẳng l Chúng ta có công thức độ dốc m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Bây giờ theo dạng độ dốc điểm phương trình là y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Bước 2: Xác định phương trình của đường thẳng m Luôn chặn x có y = 0. Do đó, điểm đã cho là (2, 0). Với độ dốc, chúng ta có phương trình sau. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Bước 3: Viết và giải hệ phương trình Chúng tôi muốn tìm nghiệm của hệ {(y
Đường thẳng (k - 2) y = 3x gặp đường cong xy = 1 -x tại hai điểm riêng biệt, Tìm tập giá trị của k. Trạng thái cũng là giá trị của k nếu đường thẳng tiếp tuyến với đường cong. Làm thế nào để tìm thấy nó?
Phương trình của đường thẳng có thể được viết lại thành ((k-2) y) / 3 = x Thay thế giá trị của x trong phương trình của đường cong, (((k-2) y) / 3) y = 1- ( (k-2) y) / 3 let k-2 = a (y ^ 2a) / 3 = (3-ya) / 3 y ^ 2a + ya-3 = 0 Vì đường thẳng giao nhau tại hai điểm khác nhau, phân biệt đối xử của phương trình trên phải lớn hơn 0. D = a ^ 2-4 (-3) (a)> 0 a [a + 12]> 0 Do đó, phạm vi của a xuất hiện là, a (-oo, -12) uu (0, oo), do đó, (k-2) trong (-oo, -12) uu (2, oo) Thêm 2 vào cả hai bên, k trong (-oo, -10), (2, oo) Nếu đường thẳng phải l
Các điểm (mật9, 2) và (mật5, 6) là các điểm cuối của đường kính của một vòng tròn Chiều dài của đường kính là bao nhiêu? Điểm trung tâm C của đường tròn là gì? Cho điểm C bạn tìm thấy trong phần (b), hãy nêu điểm đối xứng với C về trục x
D = sqrt (32) = 4sqrt (2) ~ ~ 5,66 tâm, C = (-7, 4) điểm đối xứng về trục x: (-7, -4) Cho: điểm cuối của đường kính của hình tròn: (- 9, 2), (-5, 6) Sử dụng công thức khoảng cách để tìm độ dài của đường kính: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~ ~ 5.66 Sử dụng công thức trung điểm để tìm trung tâm: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Sử dụng quy tắc tọa độ để phản ánh về trục x (x, y) ->