Thuật ngữ thứ hai và thứ năm của một loạt hình học lần lượt là 750 và -6. Tìm tỷ lệ chung của và số hạng đầu tiên của chuỗi?

Thuật ngữ thứ hai và thứ năm của một loạt hình học lần lượt là 750 và -6. Tìm tỷ lệ chung của và số hạng đầu tiên của chuỗi?
Anonim

Câu trả lời:

# r = -1 / 5, a_1 = -3750 #

Giải trình:

Các #color (màu xanh) "thuật ngữ thứ n của chuỗi hình học" # Là.

#color (đỏ) (thanh (ul (| màu (trắng) (2/2) màu (đen) (a_n = ar ^ (n-1)) màu (trắng) (2/2) |))) #

trong đó a là số hạng đầu tiên và r, tỷ lệ chung.

#rArr "thuật ngữ thứ hai" = ar ^ 1 = 750to (1) #

#rArr "thuật ngữ thứ năm" = ar ^ 4 = -6to (2) #

Để tìm r, chia (2) cho (1)

#rArr (hủy (a) r ^ 4) / (hủy (a) r) = (- 6) / 750 #

# rArrr ^ 3 = -1 / 125rArrr = -1 / 5 #

Thay giá trị này vào (1) để tìm

# rArraxx-1/5 = 750 #

# rArra = 750 / (- 1/5) = - 3750 #