Tôi nghĩ bạn đang hỏi về đạo hàm ở đây và tối đa tỷ lệ thay đổi là dốc, dẫn đến Vector bình thường
Vì vậy, đối với vô hướng
Và:
Vì vậy, chúng tôi có thể kết luận rằng:
Tốc độ thay đổi của chiều rộng (tính bằng ft / giây) là bao nhiêu khi chiều cao là 10 feet, nếu chiều cao đang giảm tại thời điểm đó với tốc độ 1 ft / giây. Hình chữ nhật có cả chiều cao thay đổi và chiều rộng thay đổi , nhưng chiều cao và chiều rộng thay đổi để diện tích của hình chữ nhật luôn là 60 feet vuông?
Tốc độ thay đổi của chiều rộng theo thời gian (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Vậy (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Vậy (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Vậy khi h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
Điểm A ở (-2, -8) và điểm B ở (-5, 3). Điểm A được xoay (3pi) / 2 theo chiều kim đồng hồ về điểm gốc. Các tọa độ mới của điểm A là bao nhiêu và khoảng cách giữa các điểm A và B thay đổi là bao nhiêu?
Đặt tọa độ cực ban đầu của A, (r, theta) Cho tọa độ Cartesian ban đầu của A, (x_1 = -2, y_1 = -8) Vì vậy, chúng ta có thể viết (x_1 = -2 = RCosthetaandy_1 = -8 = rsintheta) Sau 3pi / Xoay theo chiều kim đồng hồ 2 tọa độ mới của A trở thành x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Khoảng cách ban đầu của A từ B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 khoảng cách cuối cùng giữa vị trí mới của A ( 8, -2) và B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Vì vậy,
Các điểm (mật9, 2) và (mật5, 6) là các điểm cuối của đường kính của một vòng tròn Chiều dài của đường kính là bao nhiêu? Điểm trung tâm C của đường tròn là gì? Cho điểm C bạn tìm thấy trong phần (b), hãy nêu điểm đối xứng với C về trục x
D = sqrt (32) = 4sqrt (2) ~ ~ 5,66 tâm, C = (-7, 4) điểm đối xứng về trục x: (-7, -4) Cho: điểm cuối của đường kính của hình tròn: (- 9, 2), (-5, 6) Sử dụng công thức khoảng cách để tìm độ dài của đường kính: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~ ~ 5.66 Sử dụng công thức trung điểm để tìm trung tâm: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Sử dụng quy tắc tọa độ để phản ánh về trục x (x, y) ->