Phương trình của parabol: y = ax ^ 2 + bx + c. Tìm a, b và c.
x của trục đối xứng:
Viết rằng đồ thị đi qua điểm (1, 0) và điểm (4, -3):
(1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a
(2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1
b = -6a = -6; và c = 5a = 5
Kiểm tra với x = 1: -> y = 1 - 6 + 5 = 0. OK
Sẽ mất ít nhất 360 điểm để đội của Kiko giành chiến thắng trong một cuộc thi toán. Điểm số cho các đồng đội của Kiko là 94, 82 và 87, nhưng một đồng đội đã mất 2 trong số những điểm đó vì một câu trả lời không đầy đủ. Kiko phải kiếm được bao nhiêu điểm để đội của mình giành chiến thắng?
Điểm cho đến nay là 94 + 82 + 87-2 = 261 Kiko phải tạo ra sự khác biệt: 360-261 = 99 điểm.
Đồ thị của đường thẳng l trong mặt phẳng xy đi qua các điểm (2,5) và (4,11). Đồ thị của đường thẳng m có độ dốc -2 và giao thoa x là 2. Nếu điểm (x, y) là điểm giao nhau của đường thẳng l và m thì giá trị của y là bao nhiêu?
Y = 2 Bước 1: Xác định phương trình của đường thẳng l Chúng ta có công thức độ dốc m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Bây giờ theo dạng độ dốc điểm phương trình là y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Bước 2: Xác định phương trình của đường thẳng m Luôn chặn x có y = 0. Do đó, điểm đã cho là (2, 0). Với độ dốc, chúng ta có phương trình sau. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Bước 3: Viết và giải hệ phương trình Chúng tôi muốn tìm nghiệm của hệ {(y
Các điểm (mật9, 2) và (mật5, 6) là các điểm cuối của đường kính của một vòng tròn Chiều dài của đường kính là bao nhiêu? Điểm trung tâm C của đường tròn là gì? Cho điểm C bạn tìm thấy trong phần (b), hãy nêu điểm đối xứng với C về trục x
D = sqrt (32) = 4sqrt (2) ~ ~ 5,66 tâm, C = (-7, 4) điểm đối xứng về trục x: (-7, -4) Cho: điểm cuối của đường kính của hình tròn: (- 9, 2), (-5, 6) Sử dụng công thức khoảng cách để tìm độ dài của đường kính: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~ ~ 5.66 Sử dụng công thức trung điểm để tìm trung tâm: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Sử dụng quy tắc tọa độ để phản ánh về trục x (x, y) ->