Các số hạng thứ nhất và thứ hai của một chuỗi hình học tương ứng là các số hạng thứ nhất và thứ ba của một chuỗi tuyến tính Số hạng thứ tư của chuỗi tuyến tính là 10 và tổng của năm số hạng đầu tiên của nó là 60 Tìm năm số hạng đầu tiên của chuỗi tuyến tính?
{16, 14, 12, 10, 8} Một chuỗi hình học điển hình có thể được biểu diễn dưới dạng c_0a, c_0a ^ 2, cdots, c_0a ^ k và một chuỗi số học điển hình như c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Gọi c_0 a là yếu tố đầu tiên cho chuỗi hình học mà chúng ta có {(c_0 a ^ 2 = c_0a + 2Delta -> "Đầu tiên và thứ hai của GS là đầu tiên và thứ ba của LS"), (c_0a + 3Delta = 10- > "Số hạng thứ tư của chuỗi tuyến tính là 10"), (5c_0a + 10Delta = 60 -> "Tổng của năm số hạng đầu tiên của nó là
Tỷ lệ chó trưởng thành so với chó con tại công viên vào thứ Hai là 3: 2. Có 12 con chó con ngày hôm đó. Vào thứ ba, 15 con chó trưởng thành đã ở công viên. Sự khác biệt giữa số lượng chó trưởng thành vào thứ Hai và thứ Ba là gì?
3 tỷ lệ chó trưởng thành so với chó con: 3: 2 điều này có nghĩa là số lượng chó trưởng thành gấp 3/2 lần số chó con. Không. của chó con: 12 3/2 * 12 = 3 * 6 = 18 có 18 con chó trưởng thành trong công viên vào thứ Hai. vào thứ ba, có 15. sự khác biệt giữa 18 và 15 là 18-15, là 3. (có ít hơn 3 con chó trưởng thành vào thứ ba so với thứ hai.)
Tổng của ba số là 4. Nếu số thứ nhất được nhân đôi và số thứ ba tăng gấp ba, thì tổng bằng hai số nhỏ hơn số thứ hai. Bốn hơn cái thứ nhất được thêm vào cái thứ ba nhiều hơn cái thứ hai. Tìm những con số?
1st = 2, 2nd = 3, 3rd = -1 Tạo ba phương trình: Đặt 1st = x, 2nd = y và thứ 3 = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Loại bỏ biến y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Giải cho x bằng cách loại bỏ biến z bằng cách nhân EQ. 1 + EQ. 3 bằng -2 và thêm vào EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Giải cho z bằng cách đặt x vào EQ. 2 & EQ. 3: EQ. 2 với x: