Câu trả lời:
Giải trình:
Nếu một điểm cụ thể nằm trên biểu đồ, điều đó có nghĩa là các tọa độ đó thỏa mãn phương trình xác định biểu đồ đó.
Ví dụ, chúng tôi biết rằng
Sử dụng điều này, chúng tôi phụ trong điểm vào phương trình:
Đồ thị của đường thẳng l trong mặt phẳng xy đi qua các điểm (2,5) và (4,11). Đồ thị của đường thẳng m có độ dốc -2 và giao thoa x là 2. Nếu điểm (x, y) là điểm giao nhau của đường thẳng l và m thì giá trị của y là bao nhiêu?
Y = 2 Bước 1: Xác định phương trình của đường thẳng l Chúng ta có công thức độ dốc m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Bây giờ theo dạng độ dốc điểm phương trình là y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Bước 2: Xác định phương trình của đường thẳng m Luôn chặn x có y = 0. Do đó, điểm đã cho là (2, 0). Với độ dốc, chúng ta có phương trình sau. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Bước 3: Viết và giải hệ phương trình Chúng tôi muốn tìm nghiệm của hệ {(y
Gregory đã vẽ một hình chữ nhật ABCD trên mặt phẳng tọa độ. Điểm A nằm ở (0,0). Điểm B nằm ở (9.0). Điểm C nằm ở (9, -9). Điểm D nằm ở (0, -9). Tìm chiều dài của đĩa CD phụ?
CD bên = 9 đơn vị Nếu chúng ta bỏ qua tọa độ y (giá trị thứ hai ở mỗi điểm), thật dễ dàng để nói rằng, vì CD bên bắt đầu ở x = 9 và kết thúc tại x = 0, giá trị tuyệt đối là 9: | 0 - 9 | = 9 Hãy nhớ rằng các giải pháp cho các giá trị tuyệt đối luôn luôn dương Nếu bạn không hiểu tại sao lại như vậy, bạn cũng có thể sử dụng công thức khoảng cách: P_ "1" (9, -9) và P_ "2" (0, -9 ) Trong phương trình sau, P_ "1" là C và P_ "2" là D: sqrt ((x_ "2"
Một chiếc xe mất giá với tỷ lệ 20% mỗi năm. Vì vậy, vào cuối năm, chiếc xe có giá trị 80% giá trị từ đầu năm. Bao nhiêu phần trăm giá trị ban đầu của nó là chiếc xe có giá trị vào cuối năm thứ ba?
51,2% Hãy mô hình hóa điều này bằng hàm số mũ giảm dần. f (x) = y lần (0.8) ^ x Trong đó y là giá trị khởi đầu của xe và x là thời gian trôi qua trong năm kể từ năm mua. Vậy sau 3 năm chúng ta có các giá trị sau: f (3) = y lần (0,8) ^ 3 f (3) = 0,512y Vậy chiếc xe chỉ có giá trị 51,2% giá trị ban đầu sau 3 năm.